PC-YOLO11s: A Lightweight and Effective Feature Extraction Method for Small Target Image Detection

特征提取 萃取(化学) 人工智能 计算机科学 图像(数学) 模式识别(心理学) 特征(语言学) 计算机视觉 色谱法 化学 语言学 哲学
作者
Zhuo Wang,Yuting Su,Feng Kang,Lijin Wang,Yaohua Lin,WU Qing-shou,Huicheng Li,Zhiling Cai
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:25 (2): 348-348 被引量:6
标识
DOI:10.3390/s25020348
摘要

Compared with conventional targets, small objects often face challenges such as smaller size, lower resolution, weaker contrast, and more background interference, making their detection more difficult. To address this issue, this paper proposes an improved small object detection method based on the YOLO11 model-PC-YOLO11s. The core innovation of PC-YOLO11s lies in the optimization of the detection network structure, which includes the following aspects: Firstly, PC-YOLO11s has adjusted the hierarchical structure of the detection network and added a P2 layer specifically for small object detection. By extracting the feature information of small objects in the high-resolution stage of the image, the P2 layer helps the network better capture small objects. At the same time, in order to reduce unnecessary calculations and lower the complexity of the model, we removed the P5 layer. In addition, we have introduced the coordinate spatial attention mechanism, which can help the network more accurately obtain the spatial and positional features required for small targets, thereby further improving detection accuracy. In the VisDrone2019 datasets, experimental results show that PC-YOLO11s outperforms other existing YOLO-series models in overall performance. Compared with the baseline YOLO11s model, PC-YOLO11s mAP@0.5 increased from 39.5% to 43.8%, mAP@0.5:0.95 increased from 23.6% to 26.3%, and the parameter count decreased from 9.416M to 7.103M. Not only that, we also applied PC-YOLO11s to tea bud datasets, and experiments showed that its performance is superior to other YOLO-series models. Experiments have shown that PC-YOLO11s exhibits excellent performance in small object detection tasks, with strong accuracy improvement and good generalization ability, which can meet the needs of small object detection in practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyauthor发布了新的文献求助10
刚刚
刚刚
大大怪发布了新的文献求助10
1秒前
希安发布了新的文献求助10
1秒前
B站萧亚轩发布了新的文献求助10
2秒前
衣裳薄完成签到,获得积分10
2秒前
3秒前
伯赏尔云发布了新的文献求助10
3秒前
yangdan完成签到,获得积分20
4秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
爆米花应助阿拉曼采纳,获得30
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
Owen应助科研通管家采纳,获得10
5秒前
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
科研通AI5应助shihuili采纳,获得10
6秒前
6秒前
6秒前
6秒前
罗鹏发布了新的文献求助10
7秒前
NexusExplorer应助pzh采纳,获得10
8秒前
大钱哥完成签到,获得积分10
9秒前
10秒前
非洲好人发布了新的文献求助10
10秒前
11秒前
房产中介发布了新的文献求助10
14秒前
ilk666完成签到,获得积分10
16秒前
认真学习完成签到,获得积分20
16秒前
16秒前
16秒前
UniTTEC9560发布了新的文献求助10
17秒前
17秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826623
求助须知:如何正确求助?哪些是违规求助? 3368959
关于积分的说明 10453002
捐赠科研通 3088482
什么是DOI,文献DOI怎么找? 1699152
邀请新用户注册赠送积分活动 817281
科研通“疑难数据库(出版商)”最低求助积分说明 770136