陆源沉积物
腐蚀
沉积物
环境科学
总有机碳
三角洲
水文学(农业)
河流
干旱化
气候变化
地质学
海滩形态动力学
海洋学
泥沙输移
生态学
地貌学
岩土工程
构造盆地
航空航天工程
工程类
生物
作者
Jiang Li,Limin Hu,Yazhi Bai,Jiazong Du,Naishuang Bi,Xiao Wu,Xueshi Sun,Zhigang Guo,Houjie Wang,Zuosheng Yang
摘要
Abstract River‐dominated marginal seas play a crucial role in the global carbon cycle. However, the centennial burial record of organic carbon (OC) remains unclear. In this study, we conducted a comprehensive analysis of bulk OC, its isotopic composition (δ 13 C and Δ 14 C), biomarkers (lignin and n ‐alkanes), and sedimentological evolution based on sediment core from the Yellow River‐dominated Bohai Sea (BS). We also compiled several published OC burial records from other river‐dominated coastal margins. Our findings indicated that since the 1950s, the accumulation of terrestrial OC in central BS has shown a concurrent decline, as evidenced by a ∼50% decrease in terrigenous/aquatic ratio of n ‐alkanes (TAR), which accompanied by a significant reduction in sediment load due to the watershed human activities. More intense erosion and resuspension due to stronger hydrodynamic condition under the increasing frequency of winter storms could account for the observed sediment coarsening and concomitant increase of the degraded lignin and old‐OC since the 1980s, suggesting that delta erosion‐induced sediment redistribution could influence the selective transport and accumulation of the more woody allochthonous OC components. The temporal profiles of lignin records indicated a spatial heterogeneity of recent terrestrial OC burial among the large river‐dominated coastal margins under the enhanced global delta erosion. Compared to the fluvial input‐dominated OC burial in the Yangtze River, Pearl River and Mississippi River delta margins, a more hydrodynamic forcing impact on the terrestrial OC burial was discerned in the BS due to the coupled effect of recent climate change and substantial decline in sediment load.
科研通智能强力驱动
Strongly Powered by AbleSci AI