Combining the SLAM back and front ends with a joint vector-set distribution

接头(建筑物) 前线(军事) 集合(抽象数据类型) 分布(数学) 人工智能 计算机科学 联合概率分布 数学 工程类 数学分析 结构工程 统计 机械工程 程序设计语言
作者
Felipe Inostroza,Martin Adams
出处
期刊:The International Journal of Robotics Research [SAGE]
卷期号:44 (7): 1231-1254 被引量:2
标识
DOI:10.1177/02783649241303770
摘要

The joint optimization of map management and map feature to measurement association, together with the trajectory and map states, within a single, unified, Bayesian, feature-based, simultaneous localization and mapping (SLAM) solution is addressed in this article. Remarkable progress in feature-based SLAM has been made in which, given data association, the SLAM problem can be solved by use of nonlinear least squares solvers, often referred to as the SLAM back-end. These methods rely on external methods to solve both the data association and map management problems, which are collectively incorporated into the SLAM front-end. SLAM convergence failures are common when these front-end routines fail, particularly when feature detection uncertainty increases. Therefore, this article introduces Joint, Vector-Set SLAM (JVS-SLAM), utilizing Bayes theorem to solve feature to measurement association, map management, and SLAM itself jointly, thus combining the SLAM back and front ends. Results will demonstrate equivalent or superior SLAM performance to state-of-the-art solutions, under varying odometry, spatial and detection measurement uncertainties, without reliance on data association decisions. Results are based on both simulations and the challenging EuRoC data set, in which a drone undergoing high accelerations, equipped with a stereo camera, performs SLAM. Since JVS-SLAM jointly provides a solution to the map feature to measurement association problem, its computational complexity is comparable with multi-hypothesis based solutions. Parallels between state-of-the-art map management and feature to measurement association methods and the detection statistics used within JVS-SLAM will be examined, with a view to reducing its complexity in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aowuao完成签到,获得积分10
刚刚
wei完成签到 ,获得积分10
1秒前
老福贵儿应助双夏采纳,获得30
2秒前
3秒前
Susanx发布了新的文献求助10
4秒前
4秒前
5秒前
bzg完成签到,获得积分10
5秒前
沐言完成签到,获得积分10
6秒前
dr_zhangshiyu发布了新的文献求助10
8秒前
奋斗灵珊完成签到 ,获得积分10
8秒前
9秒前
9秒前
俏皮不可完成签到,获得积分10
10秒前
snow完成签到 ,获得积分10
10秒前
11秒前
13秒前
Candy完成签到,获得积分10
13秒前
nono发布了新的文献求助10
14秒前
小电驴完成签到,获得积分10
15秒前
16秒前
16秒前
俏皮不可关注了科研通微信公众号
16秒前
17秒前
17秒前
doudou完成签到,获得积分10
17秒前
18秒前
美丽心情完成签到,获得积分10
19秒前
yu发布了新的文献求助10
20秒前
22秒前
ptalala完成签到,获得积分10
22秒前
wanglu发布了新的文献求助10
23秒前
dr_zhangshiyu完成签到,获得积分10
24秒前
24秒前
24秒前
Twonej举报甜美的月饼求助涉嫌违规
25秒前
25秒前
25秒前
FF发布了新的文献求助30
26秒前
soapffz完成签到,获得积分0
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638365
求助须知:如何正确求助?哪些是违规求助? 4745581
关于积分的说明 15002409
捐赠科研通 4796512
什么是DOI,文献DOI怎么找? 2562691
邀请新用户注册赠送积分活动 1522009
关于科研通互助平台的介绍 1481864