Identification of intrinsic hepatotoxic compounds in Polygonum multiflorum Thunb. using machine-learning methods

支持向量机 人工智能 传统医学 生物信息学 机器学习 草本植物 鉴定(生物学) 医学 草药 化学 生物 计算机科学 生物化学 植物 基因
作者
Xiaowen Hu,Tingting Du,Shengyun Dai,Feng Wei,Xiaoguang Chen,Shuang‐Cheng Ma
出处
期刊:Journal of Ethnopharmacology [Elsevier]
卷期号:298: 115620-115620 被引量:12
标识
DOI:10.1016/j.jep.2022.115620
摘要

Polygonum multiflorum Thunb. (PM) is a herb, extracts of which have been used as Chinese medicine for years. Although it is believed to be beneficial to the liver, heart, and kidneys, it causes idiosyncratic drug-induced liver injury (DILI).We propose that the intrinsic DILI caused by natural products in PM (NPPM) is an important complementary mechanism to PM-related herb-induced liver injury, and aim to identify the ingredients with high DILI potential by machine learning methods.One hundred and ninety-seven NPPM were collected from the literature to identify the intrinsic hepatotoxic compounds. Additionally, a DILI-labeled dataset consisting of 2384 compounds was collected and randomly split into training and test sets. A diparametric optimization method was developed to tune the parameters of extended-connectivity fingerprints (ECFPs), Rdkit, and atom-pair fingerprints as well as those of machine-learning (ML) algorithms. Subsequently, K means were employed to cluster the NPPM that were predicted to have a high DILI risk. An in vitro cell-viability assay was performed using HepaRG cells to validate the prediction results.ECFPs with the top 35% of features ranked by the F-value with support vector machine (SVM) yielded the best performance. The optimized SVM model achieved an accuracy of 0.761 and recall value of 0.834 on the test dataset. The silico screening for NPPM resulted in 47 ingredients with high DILI potential, which were clustered into six groups based on the elbow method. A representative subgroup that contained 21 ingredients, of which two dianthrones exhibited the lowest IC50 value (0.7-0.9 μM) and anthraquinones showed moderate toxicity (15-25 μM), was constructed.Using ML methods and in vitro screening, two classes of compounds, dianthrones and anthraquinones, were predicted and validated to have a high risk of DILI. The diparametric optimization method used in this study could provide a useful and powerful tool to screen toxicants for large datasets and is available at https://github.com/dreadlesss/Hepatotoxicity_predictor.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
1秒前
醉熏的红酒完成签到,获得积分10
1秒前
周欣玙发布了新的文献求助30
2秒前
2秒前
z_king_d_23发布了新的文献求助10
3秒前
自觉的雨安完成签到,获得积分20
3秒前
Orange应助myn1990采纳,获得10
3秒前
4秒前
4秒前
五花肉发布了新的文献求助10
4秒前
5秒前
yyy完成签到,获得积分10
5秒前
5秒前
CipherSage应助向浩采纳,获得10
6秒前
6秒前
且做等春树应助优娜采纳,获得10
6秒前
XLC完成签到,获得积分20
8秒前
8秒前
8秒前
坦率灵槐应助66采纳,获得10
9秒前
9秒前
9秒前
桐桐应助Sun1c7采纳,获得10
9秒前
MOLLY完成签到 ,获得积分10
10秒前
dyy发布了新的文献求助10
11秒前
华花花发布了新的文献求助10
12秒前
玉溪生完成签到,获得积分10
12秒前
12秒前
13秒前
丘比特应助yls采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
来了完成签到,获得积分10
14秒前
端庄卿发布了新的文献求助10
14秒前
hanzhiyuxing发布了新的文献求助10
14秒前
lei应助66采纳,获得50
15秒前
zyn完成签到,获得积分10
16秒前
16秒前
苦无完成签到,获得积分10
17秒前
渡花应助丰富无色采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5632506
求助须知:如何正确求助?哪些是违规求助? 4727031
关于积分的说明 14982275
捐赠科研通 4790442
什么是DOI,文献DOI怎么找? 2558305
邀请新用户注册赠送积分活动 1518683
关于科研通互助平台的介绍 1479145