已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Identification of ‘Geology–Engineering’ Sweet Spots in Shale Gas Reservoirs Based on the TBO-XGBoost-GAFM Model: A Case Study of the Nanchuan Block in the Sichuan Basin

作者
Dazhi Fang,Weijun Ma,Xinyu Li,Lei Bao,Fan Zhang,Haochen Liu,Yuming Liu
出处
期刊:Processes [MDPI AG]
卷期号:13 (12): 3853-3853
标识
DOI:10.3390/pr13123853
摘要

Shale gas reservoirs are currently a focus in exploration and development in China. However, they exhibit pronounced vertical heterogeneity, are influenced by numerous geological and engineering parameters, and present significant challenges for “sweet spot” identification. Traditional sweet spot identification methods mainly rely on geologists’ experience and judgment regarding individual influencing parameters, which inevitably introduces subjectivity and uncertainty. The rapid development of artificial intelligence technology offers an opportunity to address this issue. This study adopts a geology–engineering integration approach and, based on data integration and a multi-algorithm prediction ensemble model with deep learning, proposes a predictive model built on actual data from the Nanchuan Block of the Sichuan Basin. The model integrates the Tetrahedral Topology Optimization (TBO) algorithm, Extreme Gradient Boosting (XGBoost), and Geological Attribute Feature Mapping (GAFM), aiming to improve the accuracy of shale gas reservoir sweet spot identification more effectively. The results show that sweet spots are jointly influenced by geological, rock-mechanical, and hydraulic fracturing parameters. The primary reservoir property factors controlling post-fracture productivity include TOC, permeability, porosity, and gas saturation, while the main rock-mechanical controlling factors are Poisson’s ratio, Young’s modulus, brittleness index, and Bursting Pressure. Based on the analysis of these productivity-controlling factors, the proposed integrated AI learning model achieved a sweet spot identification accuracy of 88.5%, enabling precise identification of single-well sweet spot distribution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Qq发布了新的文献求助10
刚刚
老李完成签到,获得积分10
刚刚
简单的莫言完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
萧寒发布了新的文献求助10
2秒前
3秒前
深情安青应助xiaoyuzhou采纳,获得10
4秒前
htt发布了新的文献求助10
4秒前
5秒前
周济完成签到,获得积分20
6秒前
123y发布了新的文献求助10
6秒前
fanfan发布了新的文献求助10
7秒前
8秒前
开心惜梦发布了新的文献求助50
10秒前
Rain完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
积极的明天完成签到,获得积分10
12秒前
Maria完成签到 ,获得积分10
12秒前
12秒前
海贵完成签到,获得积分10
12秒前
JAJATAO发布了新的文献求助10
13秒前
打打应助ZHAO采纳,获得10
14秒前
15秒前
丑小鸭发布了新的文献求助10
15秒前
英姑应助YMing采纳,获得10
15秒前
俭朴的跳跳糖完成签到 ,获得积分10
15秒前
16秒前
16秒前
小谢完成签到 ,获得积分10
17秒前
19秒前
nono完成签到 ,获得积分10
19秒前
千诺完成签到 ,获得积分10
20秒前
20秒前
20秒前
21秒前
柚哦发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644032
求助须知:如何正确求助?哪些是违规求助? 4762682
关于积分的说明 15023283
捐赠科研通 4802257
什么是DOI,文献DOI怎么找? 2567397
邀请新用户注册赠送积分活动 1525099
关于科研通互助平台的介绍 1484620