Deep learning habitat radiomics based on ultrasound for predicting preoperative locally progression and postoperative recurrence risk of thyroid cancer: a multicenter study

作者
LU Wenwu,Zhang, Di,Wei Wei,Ding Wen-Bo,Wu Xin,Xie Xiang,Cheng Wei-bo,Wang Tao,Hu Song,Liu, Boyuan,Zhou, Wang,Zhang Chaoxue,Zhou, Wang,Zhang Chaoxue
出处
期刊:International Journal of Surgery [Elsevier]
标识
DOI:10.1097/js9.0000000000004415
摘要

Background: Locally advanced thyroid cancer (LATC), characterized by lymph node metastasis or extrathyroidal extension, is associated with increased surgical complexity and worse prognosis compared to intrathyroidal cancer (ITC). Accurate preoperative identification of LATC is critical for optimizing surgical and postoperative management. This study aimed to develop a deep learning-based habitat radiomics (DLH) model using ultrasonographic features to predict LATC and assess recurrence risk. Methods: A retrospective cohort of 1881 thyroid cancer patients from nine medical centers. 1383 patients from eight centers were divided into a training cohort and an internal test cohort at a 7:3 ratio, while 498 patients from the remaining center served as the external test cohort. An additional prospective cohort of 130 patients serving as validation. The inclusion criteria required preoperative ultrasound examination and postoperative pathological confirmation of thyroid cancer, with exclusion of cases lacking complete clinical data. Patients were classified as LATC or intrathyroidal cancer based on postoperative pathology. Ultrasound tumor regions were manually segmented, and intratumoral subregions were delineated using K-means clustering to capture spatial heterogeneity. Peritumoral regions were generated by isotropic expansion of tumor regions of interest (ROIs). Radiomic features from intra- and peritumoral regions were used to train the DLH model. A clinical–radiomic nomogram incorporating DLH and clinical variables was constructed. Model performance was assessed using area under the curve (AUC), and recurrence-free survival (RFS) was evaluated via Kaplan–Meier and Cox regression analyses. Results: DLH was an independent predictor for both RFS and LATC (P<0.05). The nomogram achieved robust performance in preoperative LATC identification (AUC: 0.852 in the internal test cohort and 0.897 in the external test cohort). Cox regression identified DLH, tumor size, surgical approach, and lymph node metastasis count as significant RFS predictors. Conclusion: Our multicenter model effectively predicts LATC and RFS based on routine ultrasound, with potential to guide individualized treatment planning. Further validation in diverse clinical settings and longer follow-up are warranted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田照完成签到,获得积分10
刚刚
1秒前
打打应助lz采纳,获得10
1秒前
走走完成签到,获得积分10
1秒前
1秒前
跳跃幻竹完成签到,获得积分10
1秒前
无情的访冬完成签到 ,获得积分10
1秒前
五条悟发布了新的文献求助10
2秒前
个性竺完成签到,获得积分10
2秒前
寒冷半雪完成签到,获得积分10
2秒前
风衣拖地完成签到 ,获得积分10
2秒前
ding应助123采纳,获得10
2秒前
Hua完成签到 ,获得积分10
3秒前
3秒前
3秒前
LIULIU发布了新的文献求助10
3秒前
啊啊啊啊完成签到,获得积分10
3秒前
3秒前
在水一方应助陈一昂采纳,获得10
4秒前
漂亮夏兰发布了新的文献求助10
4秒前
程程程完成签到,获得积分10
5秒前
摩天大楼完成签到,获得积分10
5秒前
VDC发布了新的文献求助10
5秒前
啊哦发布了新的文献求助10
5秒前
zwd完成签到,获得积分10
5秒前
kunkun发布了新的文献求助10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
LXL发布了新的文献求助10
5秒前
6秒前
6秒前
benbengou关注了科研通微信公众号
7秒前
7秒前
刘茂清发布了新的文献求助10
7秒前
8秒前
一路生花碎西瓜完成签到 ,获得积分10
9秒前
且慢应助科研通管家采纳,获得10
9秒前
9秒前
且慢应助科研通管家采纳,获得10
9秒前
阳佟水蓉完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5471485
求助须知:如何正确求助?哪些是违规求助? 4574091
关于积分的说明 14343708
捐赠科研通 4501312
什么是DOI,文献DOI怎么找? 2466293
邀请新用户注册赠送积分活动 1454411
关于科研通互助平台的介绍 1429012