The Fingerprint Identification of Asphalt Aging Based on 1H-NMR and Chemometrics Analysis

沥青 化学计量学 主成分分析 指纹(计算) 质子核磁共振 线性判别分析 分析化学(期刊) 材料科学 数学 化学 色谱法 复合材料 人工智能 计算机科学 统计 有机化学
作者
Wenxin Wu,Chenlong Wang,Pinhui Zhao,Linyan Xiu,Liang Fan,Fei Bi,Xiaoqing Song,Zhou Xu
出处
期刊:Materials [Multidisciplinary Digital Publishing Institute]
卷期号:15 (19): 6825-6825 被引量:4
标识
DOI:10.3390/ma15196825
摘要

In this study, the chemical structure of asphalt aging was analyzed and identified based on 1H-NMR quantitative technology and chemometrics analysis. The characteristic full component information of 30 samples before and after aging from 5 different oil sources was measured by 1H-NMR, and the results were converted into a data matrix. This study used PCA, HAC, OPLS-DA, and Fisher discriminant analysis to evaluate the change rules of the chemical composition of asphalt from different oil sources after aging. The results showed that the 1H-NMR spectra of 30 asphalt samples were very similar, and hydrogen could be divided into 4 categories according to the chemical shift: HA, Hα, Hβ, and Hγ. The shapes of 1H-NMR of asphalt samples from different oil sources showed slight differences, while the shapes of the 1H-NMR spectra of asphalt samples with different aging degrees from the same oil source was basically the same. The results of PCA and HAC analysis showed that the samples of the same asphalt and asphalt with similar oil sources before and after aging were still in the same category, and the spatial distance was very close, while the spatial distance of asphalts from different oil sources was very different. The Fisher discriminant function established by PCA and HAC can be used to distinguish asphalt samples from different oil sources with an accuracy of up to 100%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
米饭多加水发布了新的文献求助150
刚刚
wsq完成签到,获得积分10
2秒前
孙建波完成签到,获得积分10
4秒前
orixero应助laola采纳,获得10
6秒前
SciGPT应助鲜于元龙采纳,获得10
7秒前
Akim应助dreamer采纳,获得10
8秒前
8秒前
10秒前
充电宝应助科研小白采纳,获得10
10秒前
JoeyCory完成签到,获得积分10
11秒前
13秒前
啾咪发布了新的文献求助10
13秒前
程超发布了新的文献求助10
13秒前
14秒前
医痞子发布了新的文献求助10
14秒前
童林艳发布了新的文献求助10
16秒前
16秒前
17秒前
赵康健完成签到,获得积分10
17秒前
美由姬发布了新的文献求助10
19秒前
20秒前
20秒前
Icy发布了新的文献求助10
21秒前
23秒前
小遇完成签到,获得积分10
24秒前
24秒前
徐开心完成签到,获得积分10
25秒前
28秒前
复杂研究牲完成签到,获得积分10
28秒前
从容傲柏发布了新的文献求助10
29秒前
美由姬完成签到,获得积分10
29秒前
狂野的驳发布了新的文献求助10
30秒前
脑洞疼应助赵哈哈采纳,获得10
31秒前
阿啵呲嘚呃of咯完成签到 ,获得积分10
32秒前
32秒前
33秒前
34秒前
wanci应助从容傲柏采纳,获得10
34秒前
Jiang完成签到,获得积分10
35秒前
35秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Genomic signature of non-random mating in human complex traits 2000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4110160
求助须知:如何正确求助?哪些是违规求助? 3648426
关于积分的说明 11556558
捐赠科研通 3354056
什么是DOI,文献DOI怎么找? 1842727
邀请新用户注册赠送积分活动 908916
科研通“疑难数据库(出版商)”最低求助积分说明 825842