已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Optimization of water quality index models using machine learning approaches

层次分析法 水质 熵(时间箭头) 数学 人工智能 可靠性(半导体) 质量(理念) 计算机科学 统计 机器学习 数据挖掘 运筹学 生态学 功率(物理) 哲学 物理 认识论 量子力学 生物
作者
Fei Ding,Wenjie Zhang,Shaohua Cao,Shilong Hao,Liangyao Chen,Xin Xie,Wenpan Li,Mingcen Jiang
出处
期刊:Water Research [Elsevier BV]
卷期号:243: 120337-120337 被引量:78
标识
DOI:10.1016/j.watres.2023.120337
摘要

To optimize the water quality index (WQI) assessment model, this study upgraded the parameter weight values and aggregation functions. We determined the combined weights based on machine learning and game theory to improve the accuracy of the models, and proposed new aggregation functions to reduce the uncertainty of the model. A new water quality assessment system was established, and took the Chaobai River Basin as a case study. To optimize the weight, two combined weights were established based on game theory. The weight CWAE was combined by the Analytic Hierarchy Process (AHP) and Entropy Weight Method (EWM). The weight CWAL was combined by AHP and machine learning (LightGBM). CWAL was judged to be an optimal composite weight by comparing the coefficient of variation (CV) values and the Kaiser-Meyer-Olkin (KMO) extracted values. To reduce the uncertainty of the model, we proposed two aggregation functions, the Sinusoidal Weighted Mean (SWM) and the Log-weighted Quadratic Mean (LQM). The three water quality assessment models (WQIS, WQIL and WQIW) were established based on the optimal weights besides. All three models had good reliability. Both WQIS and WQIW models had low eclipsing problems (25.49% and 18.63%). The accuracy of the models was ranked as WQIS > WQIW > WQIL. The uncertainty of WQIs (0.000) in assessing poor water quality was low, and so was WQIW (0.259) in assessing good water quality. Overall, the WQIS model was recommended for assessing poor water quality and the WQIW model was recommended for assessing good water quality. The assessment results of WQIS showed that the Chaobai River Basin was "slightly polluted", and the water quality upstream was better than that downstream. TN was the main pollutant in the basin, and there was slight pollution with CODMn, CODCr, BOD5, etc. There was little metal contamination, only a few months exceeded Class I. The model established in this study can provide a reference for the same type work of water quality assessment. The assessment results can provide a scientific basis for the protection of the regional water environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
精英刺客发布了新的文献求助30
5秒前
刻苦的盼烟完成签到,获得积分10
6秒前
David完成签到 ,获得积分10
7秒前
和谐的果汁完成签到 ,获得积分10
10秒前
子车半烟完成签到,获得积分10
10秒前
12秒前
15秒前
科研通AI5应助lily采纳,获得10
17秒前
yzy完成签到 ,获得积分10
18秒前
Owen应助fhh采纳,获得10
20秒前
精英刺客完成签到,获得积分10
23秒前
精明的橘子完成签到,获得积分10
23秒前
华仔应助漂亮寻云采纳,获得50
23秒前
稳重的盼山完成签到,获得积分10
24秒前
AEROU完成签到 ,获得积分10
24秒前
24秒前
Akim应助衷医课代表采纳,获得10
25秒前
灰鸽舞完成签到 ,获得积分10
28秒前
江流儿发布了新的文献求助10
32秒前
32秒前
36秒前
37秒前
衷医课代表完成签到,获得积分10
38秒前
小白加油完成签到 ,获得积分10
38秒前
38秒前
illusion发布了新的文献求助10
41秒前
mmyhn完成签到,获得积分10
49秒前
FashionBoy应助illusion采纳,获得10
51秒前
江流儿完成签到,获得积分10
52秒前
华仔应助rd采纳,获得10
52秒前
蚍蜉渡海完成签到,获得积分10
52秒前
1分钟前
冷静新烟完成签到,获得积分20
1分钟前
1分钟前
just_cook完成签到,获得积分10
1分钟前
LX发布了新的文献求助20
1分钟前
123发布了新的文献求助10
1分钟前
1分钟前
哔噗哔噗完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
Erectile dysfunction From bench to bedside 200
Advanced Introduction to Behavioral Law and Economics 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824866
求助须知:如何正确求助?哪些是违规求助? 3367265
关于积分的说明 10444831
捐赠科研通 3086477
什么是DOI,文献DOI怎么找? 1698062
邀请新用户注册赠送积分活动 816632
科研通“疑难数据库(出版商)”最低求助积分说明 769848