Identification of four-gene signature to diagnose osteoarthritis through bioinformatics and machine learning methods

鉴定(生物学) 签名(拓扑) 骨关节炎 计算生物学 机器学习 生物信息学 人工智能 计算机科学 生物 医学 病理 数学 几何学 替代医学 植物
作者
Ziyi Chen,Wenjuan Wang,Yuwen Zhang,Xiao’ao Xue,Yinghui Hua
出处
期刊:Cytokine [Elsevier BV]
卷期号:169: 156300-156300 被引量:14
标识
DOI:10.1016/j.cyto.2023.156300
摘要

Although osteoarthritis (OA) is one of the most prevalent joint disorders, effective biomarkers to diagnose OA are still unavailable. This study aimed to acquire some key synovial biomarkers (hub genes) and analyze their correlation with immune infiltration in OA. Gene expression profiles and clinical characteristics of OA and healthy synovial samples were retrieved from the Gene Expression Omnibus (GEO) database. Hub genes for OA were mined based on a combination of weighted gene co-expression network analysis (WGCNA), the least absolute shrinkage and selection operator (LASSO), support vector machine recursive feature elimination (SVM-RFE), and random forest (RF) algorithms. A diagnostic nomogram model for OA prediction was developed based on the hub genes. Receiver operating characteristic curves (ROC) were performed to confirm the abnormal expression of hub genes in the experimemtal and validation datasets. qRT-PCR using patients’ samples were conducted as well. In addition, the infiltration level of 28 immune cells in the expression profile and their relationship with hub genes were analyzed using single-sample GSEA (ssGSEA). 4 hub genes (ZBTB16, TNFSF11, SCRG1 and KDELR3) were obtained by WGCNA, lasso, SVM-RFE, RF algorithms as potential biomarkers for OA. The immune infiltration analyses revealed that hub genes were most correlated with regulatory T cell and natural killer cell. A machine learning model to diagnose OA based on ZBTB16, TNFSF11, SCRG1 and KDELR3 using synovial tissue was constructed, providing theoretical foundation and guideline for diagnostic and treatment targets in OA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fengw420完成签到,获得积分10
刚刚
1秒前
搜集达人应助十一采纳,获得10
1秒前
多啦2642完成签到,获得积分10
1秒前
浮游应助fan采纳,获得10
1秒前
Sophy7074关注了科研通微信公众号
2秒前
2秒前
echo1.2完成签到,获得积分10
2秒前
情怀应助MJ采纳,获得10
2秒前
3秒前
lalala应助糖糖糖采纳,获得20
3秒前
3秒前
3秒前
Shohan完成签到 ,获得积分10
3秒前
4秒前
超帅的不可完成签到,获得积分20
4秒前
4秒前
玄黄大世界完成签到,获得积分10
4秒前
Aluhaer应助辛子采纳,获得10
5秒前
852应助qizhixu采纳,获得10
5秒前
5秒前
小二郎应助yoyo采纳,获得10
6秒前
7秒前
7秒前
7秒前
echo1.2发布了新的文献求助10
7秒前
不想长大发布了新的文献求助10
7秒前
ccm应助fan采纳,获得10
9秒前
9秒前
10秒前
凡凡发布了新的文献求助10
10秒前
jmn完成签到,获得积分10
11秒前
房靳发布了新的文献求助200
11秒前
11秒前
迷路荷花发布了新的文献求助10
11秒前
11秒前
橙以澄完成签到,获得积分10
12秒前
GongSyi完成签到 ,获得积分10
12秒前
小马甲应助煜寅采纳,获得10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5271518
求助须知:如何正确求助?哪些是违规求助? 4429192
关于积分的说明 13787815
捐赠科研通 4307460
什么是DOI,文献DOI怎么找? 2363567
邀请新用户注册赠送积分活动 1359231
关于科研通互助平台的介绍 1322167