Loading Effect during SiGe/Si Stack Selective Isotropic Etching for Gate-All-Around Transistors

材料科学 堆栈(抽象数据类型) 蚀刻(微加工) 光电子学 晶体管 各向同性 金属浇口 纳米技术 图层(电子) 栅氧化层 电气工程 光学 计算机科学 工程类 物理 电压 程序设计语言
作者
Hua Shao,Tobias Reiter,Rui Chen,Junjie Li,Ziyi Hu,Yayi Wei,Ling Li,Lado Filipovic
出处
期刊:ACS applied electronic materials [American Chemical Society]
卷期号:6 (11): 8124-8133 被引量:3
标识
DOI:10.1021/acsaelm.4c01462
摘要

The loading effect hinders the precise profile control during the selective etching of SiGe in stacked SiGe/Si layers, thereby hindering optimal gate-all-around (GAA) transistor performance. In this article, we present a systematic study on the loading effect in the selective isotropic etching of SiGe in SiGe/Si stacks by varying the structure density and process conditions, including chamber pressure and etch time. We measure the lateral SiGe etching depth at different locations within the stack pillars and evaluate the local etch uniformity. The results demonstrate that pressure plays an important role in affecting the isotropic lateral etching performance. Within the tested 10–40 mTorr range, higher pressures lead to increased etch rates but at the cost of reduced uniformity. A noteworthy observation is that the uniformity also decreases as the process time increases. To understand and quantify the phenomena, we propose a physical etch model based on top-down Monte Carlo ray tracing and simulate the etch profiles. We calibrate the model with measured data on less dense pillar arrays with 100 nm spacing and achieve small prediction error on denser pillars with a spacing of 50 nm. The good agreement between simulations and experiments demonstrates that the restriction of particle diffusion in the narrow gap is the major contributor to the loading effect, and our model is capable of quantitatively characterizing this phenomenon by predicting the lateral etching profile. This research provides valuable insights into the etching effects through experiments and theoretical studies in order to promote the advanced etching technology development toward GAA transistor manufacturing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hujieshi完成签到,获得积分10
刚刚
3-HP完成签到,获得积分10
刚刚
积极向上完成签到,获得积分10
刚刚
XiaoxianSu完成签到,获得积分10
1秒前
研究生end应助太阳采纳,获得20
1秒前
nenoaowu发布了新的文献求助10
1秒前
2秒前
tangtang787完成签到,获得积分10
2秒前
2秒前
无极微光应助凌云采纳,获得20
2秒前
活泼的飞扬完成签到,获得积分10
2秒前
3秒前
3秒前
Nxx完成签到,获得积分10
3秒前
快乐爱斯米完成签到,获得积分10
3秒前
小陀螺完成签到,获得积分10
4秒前
0109发布了新的文献求助50
4秒前
科研通AI6应助zihan采纳,获得10
4秒前
win完成签到,获得积分10
4秒前
ding应助huzi采纳,获得10
5秒前
科研通AI6应助北夏暖采纳,获得10
5秒前
5秒前
VV完成签到,获得积分10
6秒前
田様应助白鹭采纳,获得10
6秒前
6秒前
6秒前
奥丁蒂法发布了新的文献求助10
7秒前
7秒前
太阳完成签到,获得积分10
7秒前
8秒前
8秒前
AHR发布了新的文献求助10
8秒前
张馨友发布了新的文献求助10
8秒前
科研通AI5应助赵辉采纳,获得30
8秒前
kazuma完成签到,获得积分20
8秒前
9秒前
jiafei发布了新的文献求助10
9秒前
SSSSYYYY发布了新的文献求助20
10秒前
桐桐应助SSNN采纳,获得30
10秒前
林子发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5167718
求助须知:如何正确求助?哪些是违规求助? 4359709
关于积分的说明 13573667
捐赠科研通 4206116
什么是DOI,文献DOI怎么找? 2306890
邀请新用户注册赠送积分活动 1306385
关于科研通互助平台的介绍 1253060