Decoupling and predicting natural gas deviation factor using machine learning methods

支持向量机 计算机科学 人工神经网络 人工智能 机器学习 解耦(概率) 梯度升压 稳健性(进化) 极限学习机 Boosting(机器学习) 算法 天然气 随机森林 工程类 化学 控制工程 生物化学 基因 废物管理
作者
Shaoyang Geng,Shuo Zhai,Jianwen Ye,Yajie Gao,Hao Luo,Chengyong Li,Liu Xian-shan,Shudong Liu
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-72499-5
摘要

Accurately predicting the deviation factor (Z-factor) of natural gas is crucial for the estimation of natural gas reserves, evaluation of gas reservoir recovery, and assessment of natural gas transport in pipelines. Traditional machine learning algorithms, such as Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), Artificial Neural Network (ANN) and Bidirectional Long Short-Term Memory Neural Networks (BiLSTM), often lack accuracy and robustness in various situations due to their inability to generalize across different gas components and temperature-pressure conditions. To address this limitation, we propose a novel and efficient machine learning framework for predicting natural gas Z-factor. Our approach first utilizes a signal decomposition algorithm like Variational Mode Decomposition (VMD), Empirical Fourier Decomposition (EFD) and Ensemble Empirical Mode Decomposition (EEMD) to decouple the Z-factor into multiple components. Subsequently, traditional machine learning algorithms is employed to predict each decomposed Z-factor component, where combination of SVM and VMD achieved the best performance. Decoupling the Z-factors firstly and then predicting the decoupled components can significantly improve prediction accuracy of all traditional machine learning algorithms. We thoroughly evaluate the impact of the decoupling method and the number of decomposed components on the model's performance. Compared to traditional machine learning models without decomposition, our framework achieves an average correlation coefficient exceeding 0.99 and an average mean absolute percentage error below 0.83% on 10 datasets with different natural gas components, high temperatures, and pressures. These results indicate that hybrid model effectively learns the patterns of Z-factor variations and can be applied to the prediction of natural gas Z-factors under various conditions. This study significantly advances methodologies for predicting natural gas properties, offering a unified and robust solution for precise estimations, thereby benefiting the natural gas industry in resource estimation and reservoir management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
现实的日记本完成签到,获得积分10
刚刚
lizhiqian2024完成签到,获得积分20
1秒前
magic完成签到,获得积分10
1秒前
cyh发布了新的文献求助10
2秒前
zhang完成签到,获得积分10
2秒前
无情干饭崽完成签到,获得积分10
3秒前
3秒前
cdercder应助yuqinghui98采纳,获得10
3秒前
盛夏完成签到,获得积分10
3秒前
pizza完成签到,获得积分10
4秒前
黄74185296完成签到,获得积分10
4秒前
SYLH应助meatball1982采纳,获得10
5秒前
5秒前
nokoko完成签到 ,获得积分10
5秒前
一鸣完成签到,获得积分10
5秒前
阿瑶与呆呆完成签到,获得积分10
5秒前
zzz完成签到,获得积分10
5秒前
天天快乐应助wjw采纳,获得10
6秒前
牛太虚完成签到,获得积分10
7秒前
wansida完成签到,获得积分10
7秒前
逸兴遄飞完成签到,获得积分20
7秒前
Accepted完成签到,获得积分10
7秒前
年鱼精完成签到 ,获得积分10
7秒前
王金金发布了新的文献求助10
8秒前
9秒前
sunshine完成签到,获得积分10
9秒前
kkkrystal发布了新的文献求助10
9秒前
CatSYL完成签到 ,获得积分10
9秒前
玼桃树完成签到 ,获得积分10
10秒前
Bryce完成签到,获得积分10
10秒前
金秋完成签到,获得积分0
10秒前
10秒前
笨鸟先飞完成签到 ,获得积分10
10秒前
Li发布了新的文献求助10
11秒前
专注的猫咪完成签到 ,获得积分10
11秒前
昭奚发布了新的文献求助10
12秒前
12秒前
cyh完成签到,获得积分10
13秒前
隐形曼青应助阿瑶与呆呆采纳,获得10
13秒前
里工完成签到 ,获得积分10
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784938
求助须知:如何正确求助?哪些是违规求助? 3330274
关于积分的说明 10245276
捐赠科研通 3045590
什么是DOI,文献DOI怎么找? 1671719
邀请新用户注册赠送积分活动 800686
科研通“疑难数据库(出版商)”最低求助积分说明 759609