Integrated image-based deep learning and language models for primary diabetes care

医学 初级保健 介绍 糖尿病 糖尿病管理 经济短缺 家庭医学 2型糖尿病 内分泌学 语言学 哲学 政府(语言学)
作者
Jiajia Li,Zhouyu Guan,Jing Wang,Carol Y. Cheung,Yingfeng Zheng,Lee‐Ling Lim,Cynthia Ciwei Lim,Paisan Ruamviboonsuk,Rajiv Raman,Leonor Corsino,Justin B. Echouffo‐Tcheugui,Andrea O. Y. Luk,Li Jia Chen,Xiaodong Sun,Haslina Hamzah,Qiang Wu,Xiangning Wang,Ruhan Liu,Ya Xing Wang,Ting‐Li Chen
出处
期刊:Nature Medicine [Nature Portfolio]
卷期号:30 (10): 2886-2896 被引量:92
标识
DOI:10.1038/s41591-024-03139-8
摘要

Abstract Primary diabetes care and diabetic retinopathy (DR) screening persist as major public health challenges due to a shortage of trained primary care physicians (PCPs), particularly in low-resource settings. Here, to bridge the gaps, we developed an integrated image–language system (DeepDR-LLM), combining a large language model (LLM module) and image-based deep learning (DeepDR-Transformer), to provide individualized diabetes management recommendations to PCPs. In a retrospective evaluation, the LLM module demonstrated comparable performance to PCPs and endocrinology residents when tested in English and outperformed PCPs and had comparable performance to endocrinology residents in Chinese. For identifying referable DR, the average PCP’s accuracy was 81.0% unassisted and 92.3% assisted by DeepDR-Transformer. Furthermore, we performed a single-center real-world prospective study, deploying DeepDR-LLM. We compared diabetes management adherence of patients under the unassisted PCP arm ( n = 397) with those under the PCP+DeepDR-LLM arm ( n = 372). Patients with newly diagnosed diabetes in the PCP+DeepDR-LLM arm showed better self-management behaviors throughout follow-up ( P < 0.05). For patients with referral DR, those in the PCP+DeepDR-LLM arm were more likely to adhere to DR referrals ( P < 0.01). Additionally, DeepDR-LLM deployment improved the quality and empathy level of management recommendations. Given its multifaceted performance, DeepDR-LLM holds promise as a digital solution for enhancing primary diabetes care and DR screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JN完成签到,获得积分10
刚刚
等等发布了新的文献求助10
刚刚
ZhangR发布了新的文献求助20
刚刚
大方的笑萍完成签到 ,获得积分10
1秒前
2秒前
李华完成签到 ,获得积分10
2秒前
852应助豆4799采纳,获得10
3秒前
ZHZHYU完成签到,获得积分10
3秒前
3秒前
鸡蛋饼波比完成签到,获得积分10
3秒前
4秒前
万能图书馆应助日暖月寒采纳,获得10
4秒前
姚瑞峰完成签到,获得积分20
4秒前
gyes发布了新的文献求助10
4秒前
公子发布了新的文献求助10
4秒前
4秒前
FashionBoy应助Pyrene采纳,获得10
4秒前
zzzxh发布了新的文献求助10
5秒前
5秒前
科研通AI6应助nine2652采纳,获得10
5秒前
6秒前
梁guocui发布了新的文献求助10
6秒前
奇异果果完成签到 ,获得积分10
6秒前
Lucas应助嘿撒采纳,获得10
6秒前
JamesPei应助aaa采纳,获得10
7秒前
姚瑞峰发布了新的文献求助10
7秒前
Dr.Liujun发布了新的文献求助10
8秒前
丘比特应助chsdpolos采纳,获得10
8秒前
8秒前
liran12319发布了新的文献求助10
9秒前
是猪毛啊完成签到,获得积分10
9秒前
赘婿应助li采纳,获得10
9秒前
善学以致用应助Chloe采纳,获得10
9秒前
10秒前
JamesPei应助522采纳,获得50
10秒前
田様应助Linyi采纳,获得10
10秒前
Ava应助Leon采纳,获得10
10秒前
ZHZHYU发布了新的文献求助10
11秒前
wjx发布了新的文献求助10
12秒前
四叶草完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5262045
求助须知:如何正确求助?哪些是违规求助? 4423178
关于积分的说明 13768730
捐赠科研通 4297627
什么是DOI,文献DOI怎么找? 2358073
邀请新用户注册赠送积分活动 1354468
关于科研通互助平台的介绍 1315580