More to Lose: The Adverse Effect of High Performance Ranking on Employees’ Preimplementation Attitudes Toward the Integration of Powerful AI Aids

排名(信息检索) 心理学 社会心理学 知识管理 业务 营销 公共关系 计算机科学 人工智能 政治学
作者
Ilanit SimanTov‐Nachlieli
出处
期刊:Organization Science [Institute for Operations Research and the Management Sciences]
被引量:4
标识
DOI:10.1287/orsc.2023.17515
摘要

Despite the growing availability of algorithm-augmented work, algorithm aversion is prevalent among employees, hindering successful implementations of powerful artificial intelligence (AI) aids. Applying a social comparison perspective, this article examines the adverse effect of employees’ high performance ranking on their preimplementation attitudes toward the integration of powerful AI aids within their area of advantage. Five studies, using a weight estimation simulation (Studies 1–3), recall of actual job tasks (Study 4), and a workplace scenario (Study 5), provided consistent causal evidence for this effect by manipulating performance ranking (performance advantage compared with peers versus no advantage). Studies 3–4 revealed that this effect was driven in part by employees’ perceived potential loss of standing compared with peers, a novel social-based mechanism complementing the extant explanation operating via one’s confidence in own (versus AI) ability. Stronger causal evidence for this mechanism was provided in Study 5 using a “moderation-of-process” design. It showed that the adverse effect of high performance ranking on preimplementation AI attitudes was reversed when bolstering the stability of future performance rankings (presumably counteracting one’s concern with potential loss of standing). Finally, pointing to the power of symbolic threats, this adverse effect was evident both in the absence of financial incentives for high performance (Study 1) and in various incentive-based settings (Studies 2–3). Implications for understanding and managing high performers’ aversion toward the integration of powerful algorithmic aids are discussed. Funding: This work was supported by the Coller Foundation. Supplemental Material: The supplemental material is available at https://doi.org/10.1287/orsc.2023.17515 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欢呼的傲旋完成签到,获得积分10
刚刚
俞绯完成签到,获得积分10
刚刚
小机灵鬼发布了新的文献求助10
刚刚
2秒前
阳光的梦寒完成签到,获得积分10
3秒前
夜已深完成签到,获得积分10
6秒前
kinase完成签到 ,获得积分10
7秒前
8秒前
Diego完成签到,获得积分10
9秒前
10秒前
Xenia完成签到 ,获得积分10
12秒前
CodeCraft应助小机灵鬼采纳,获得10
13秒前
qqqyoyoyo完成签到,获得积分10
13秒前
14秒前
pipi发布了新的文献求助10
14秒前
Erueka完成签到,获得积分10
15秒前
15秒前
Sg完成签到,获得积分10
15秒前
彩色的荔枝完成签到 ,获得积分10
16秒前
过过发布了新的文献求助10
17秒前
qqqyoyoyo发布了新的文献求助10
17秒前
深居简出发布了新的文献求助30
18秒前
有梦想的咸鱼完成签到,获得积分10
18秒前
可爱的函函应助遇见飞儿采纳,获得10
18秒前
19秒前
追寻羿完成签到 ,获得积分10
19秒前
大熊完成签到 ,获得积分10
20秒前
23秒前
24秒前
落寞的又菡完成签到,获得积分10
24秒前
冰魂应助pipi采纳,获得10
24秒前
蜡笔小新完成签到,获得积分10
25秒前
香草冰淇淋完成签到,获得积分10
26秒前
青山发布了新的文献求助50
28秒前
what完成签到,获得积分10
30秒前
LLL完成签到,获得积分10
32秒前
Long发布了新的文献求助10
32秒前
田様应助王佳豪采纳,获得10
33秒前
fiona完成签到,获得积分10
33秒前
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777834
求助须知:如何正确求助?哪些是违规求助? 3323349
关于积分的说明 10213997
捐赠科研通 3038590
什么是DOI,文献DOI怎么找? 1667553
邀请新用户注册赠送积分活动 798161
科研通“疑难数据库(出版商)”最低求助积分说明 758290