More to Lose: The Adverse Effect of High Performance Ranking on Employees’ Preimplementation Attitudes Toward the Integration of Powerful AI Aids

排名(信息检索) 心理学 社会心理学 知识管理 业务 营销 公共关系 计算机科学 人工智能 政治学
作者
Ilanit SimanTov‐Nachlieli
出处
期刊:Organization Science [Institute for Operations Research and the Management Sciences]
卷期号:36 (1): 1-20 被引量:14
标识
DOI:10.1287/orsc.2023.17515
摘要

Despite the growing availability of algorithm-augmented work, algorithm aversion is prevalent among employees, hindering successful implementations of powerful artificial intelligence (AI) aids. Applying a social comparison perspective, this article examines the adverse effect of employees’ high performance ranking on their preimplementation attitudes toward the integration of powerful AI aids within their area of advantage. Five studies, using a weight estimation simulation (Studies 1–3), recall of actual job tasks (Study 4), and a workplace scenario (Study 5), provided consistent causal evidence for this effect by manipulating performance ranking (performance advantage compared with peers versus no advantage). Studies 3–4 revealed that this effect was driven in part by employees’ perceived potential loss of standing compared with peers, a novel social-based mechanism complementing the extant explanation operating via one’s confidence in own (versus AI) ability. Stronger causal evidence for this mechanism was provided in Study 5 using a “moderation-of-process” design. It showed that the adverse effect of high performance ranking on preimplementation AI attitudes was reversed when bolstering the stability of future performance rankings (presumably counteracting one’s concern with potential loss of standing). Finally, pointing to the power of symbolic threats, this adverse effect was evident both in the absence of financial incentives for high performance (Study 1) and in various incentive-based settings (Studies 2–3). Implications for understanding and managing high performers’ aversion toward the integration of powerful algorithmic aids are discussed. Funding: This work was supported by the Coller Foundation. Supplemental Material: The supplemental material is available at https://doi.org/10.1287/orsc.2023.17515 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zsp关注了科研通微信公众号
1秒前
3秒前
TheGala完成签到,获得积分10
3秒前
沉默的八宝粥完成签到,获得积分10
3秒前
抑郁小鼠解剖家完成签到,获得积分10
4秒前
鹿阿布完成签到,获得积分10
6秒前
外向万声完成签到,获得积分10
7秒前
顺心的惜蕊完成签到 ,获得积分10
7秒前
10秒前
量子星尘发布了新的文献求助10
12秒前
拉长的灵煌完成签到,获得积分10
14秒前
lyyyyl完成签到,获得积分10
14秒前
14秒前
ZOE完成签到,获得积分0
14秒前
鹿靡发布了新的文献求助10
15秒前
zzz完成签到,获得积分10
16秒前
循循发布了新的文献求助10
16秒前
大胆的初瑶完成签到,获得积分10
19秒前
观察者小黑完成签到,获得积分10
19秒前
221完成签到,获得积分10
19秒前
22秒前
黄秃秃秃秃完成签到 ,获得积分10
22秒前
23秒前
25秒前
朵朵完成签到,获得积分10
25秒前
小潘完成签到 ,获得积分10
26秒前
Orange应助Meidina采纳,获得10
27秒前
28秒前
29秒前
量子星尘发布了新的文献求助10
30秒前
英姑应助顺利采纳,获得10
33秒前
乐乐应助ll采纳,获得10
35秒前
35秒前
35秒前
37秒前
38秒前
听音乐的可可完成签到 ,获得积分10
38秒前
乐观三问完成签到 ,获得积分20
40秒前
qiuqiu完成签到,获得积分10
40秒前
狗头发布了新的文献求助10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419552
求助须知:如何正确求助?哪些是违规求助? 4534796
关于积分的说明 14146780
捐赠科研通 4451460
什么是DOI,文献DOI怎么找? 2441744
邀请新用户注册赠送积分活动 1433345
关于科研通互助平台的介绍 1410587