More to Lose: The Adverse Effect of High Performance Ranking on Employees’ Preimplementation Attitudes Toward the Integration of Powerful AI Aids

排名(信息检索) 心理学 社会心理学 知识管理 业务 营销 公共关系 计算机科学 人工智能 政治学
作者
Ilanit SimanTov‐Nachlieli
出处
期刊:Organization Science [Institute for Operations Research and the Management Sciences]
卷期号:36 (1): 1-20 被引量:14
标识
DOI:10.1287/orsc.2023.17515
摘要

Despite the growing availability of algorithm-augmented work, algorithm aversion is prevalent among employees, hindering successful implementations of powerful artificial intelligence (AI) aids. Applying a social comparison perspective, this article examines the adverse effect of employees’ high performance ranking on their preimplementation attitudes toward the integration of powerful AI aids within their area of advantage. Five studies, using a weight estimation simulation (Studies 1–3), recall of actual job tasks (Study 4), and a workplace scenario (Study 5), provided consistent causal evidence for this effect by manipulating performance ranking (performance advantage compared with peers versus no advantage). Studies 3–4 revealed that this effect was driven in part by employees’ perceived potential loss of standing compared with peers, a novel social-based mechanism complementing the extant explanation operating via one’s confidence in own (versus AI) ability. Stronger causal evidence for this mechanism was provided in Study 5 using a “moderation-of-process” design. It showed that the adverse effect of high performance ranking on preimplementation AI attitudes was reversed when bolstering the stability of future performance rankings (presumably counteracting one’s concern with potential loss of standing). Finally, pointing to the power of symbolic threats, this adverse effect was evident both in the absence of financial incentives for high performance (Study 1) and in various incentive-based settings (Studies 2–3). Implications for understanding and managing high performers’ aversion toward the integration of powerful algorithmic aids are discussed. Funding: This work was supported by the Coller Foundation. Supplemental Material: The supplemental material is available at https://doi.org/10.1287/orsc.2023.17515 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
噜噜发布了新的文献求助50
刚刚
麦克疯发布了新的文献求助10
1秒前
时尚海安发布了新的文献求助10
1秒前
Huang完成签到 ,获得积分0
1秒前
Aurora完成签到,获得积分20
3秒前
3秒前
Henagan完成签到 ,获得积分10
3秒前
3秒前
5秒前
5秒前
5秒前
7秒前
李爱国应助大芳儿采纳,获得10
7秒前
LIU发布了新的文献求助10
8秒前
受伤冰菱完成签到,获得积分10
8秒前
8秒前
借过123完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
WL发布了新的文献求助10
10秒前
戴承航完成签到,获得积分10
10秒前
彬彬完成签到 ,获得积分10
10秒前
free_man完成签到,获得积分10
11秒前
Vegetable_Dog发布了新的文献求助10
11秒前
12秒前
晨澜发布了新的文献求助30
12秒前
852应助团子采纳,获得10
12秒前
14秒前
14秒前
15秒前
壮观复天发布了新的文献求助10
15秒前
今后应助yxy采纳,获得10
15秒前
15秒前
时尚海安完成签到,获得积分10
15秒前
16秒前
科研通AI6应助摔跤的猫采纳,获得10
16秒前
量子星尘发布了新的文献求助10
16秒前
科研通AI2S应助Auba采纳,获得10
18秒前
科研通AI6应助yiyi163采纳,获得10
19秒前
科研小新发布了新的文献求助10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5656283
求助须知:如何正确求助?哪些是违规求助? 4802765
关于积分的说明 15075386
捐赠科研通 4814578
什么是DOI,文献DOI怎么找? 2575843
邀请新用户注册赠送积分活动 1531182
关于科研通互助平台的介绍 1489776