已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Using machine learning to classify the immunosuppressive activity of per- and polyfluoroalkyl substances

药理学 人工智能 传统医学 医学 化学 机器学习 计算机科学
作者
Yuxin Xuan,Yulu Wang,Rui Li,Yuyan Zhong,Na Wang,Lingyin Zhang,Qian Chen,Shuling Yu,Jintao Yuan
出处
期刊:Toxicology Mechanisms and Methods [Taylor & Francis]
卷期号:: 1-9
标识
DOI:10.1080/15376516.2024.2387733
摘要

Per- and polyfluoroalkyl substances (PFASs), one of the persistent organic pollutants, have immunosuppressive effects. The evaluation of this effect has been the focus of regulatory toxicology. In this investigation, 146 PFASs (immunosuppressive or nonimmunosuppressive) and corresponding concentration gradients were collected from literature, and their structures were characterized by using Dragon descriptors. Feature importance analysis and stepwise feature elimination are used for feature selection. Three machine learning (ML) methods, namely Random Forest (RF), Extreme Gradient Boosting Machine (XGB), and Categorical Boosting Machine (CB), were utilized for model development. The model interpretability was explored by feature importance analysis and correlation analysis. The findings indicated that the three models developed have exhibited excellent performance. Among them, the best-performing RF model has an average AUC score of 0.9720 for the testing set. The results of the feature importance analysis demonstrated that concentration, SpPosA_X, IVDE, R2s, and SIC2 were the crucial molecular features. Applicability domain analysis was also performed to determine reliable prediction boundaries for the model. In conclusion, this study is the first application of ML models to investigate the immunosuppressive activity of PFASs. The variables used in the models can help understand the mechanism of the immunosuppressive activity of PFASs, allow researchers to more effectively assess the immunosuppressive potential of a large number of PFASs, and thus better guide environmental and health risk assessment efforts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Li完成签到,获得积分20
刚刚
2秒前
这橘不甜发布了新的文献求助30
9秒前
12秒前
12秒前
yyu完成签到,获得积分20
12秒前
科研通AI5应助Q123ba叭采纳,获得10
12秒前
结实初翠发布了新的文献求助10
15秒前
ding应助科研通管家采纳,获得10
16秒前
打打应助科研通管家采纳,获得10
16秒前
XXXX完成签到,获得积分20
16秒前
Owen应助科研通管家采纳,获得10
16秒前
16秒前
顾矜应助科研通管家采纳,获得10
16秒前
Yu发布了新的文献求助30
17秒前
22秒前
wab完成签到,获得积分0
23秒前
多年以后完成签到,获得积分10
23秒前
希望天下0贩的0应助yyu采纳,获得30
25秒前
Yu完成签到,获得积分10
29秒前
30秒前
MS发布了新的文献求助30
36秒前
木子发布了新的文献求助10
37秒前
结实初翠完成签到,获得积分10
37秒前
40秒前
领导范儿应助结实初翠采纳,获得10
42秒前
天天完成签到,获得积分10
43秒前
45秒前
li发布了新的文献求助10
45秒前
轻松的芯发布了新的文献求助10
46秒前
锅子发布了新的文献求助10
46秒前
48秒前
九思发布了新的文献求助20
49秒前
小二郎应助OK不服气采纳,获得10
52秒前
Nowind发布了新的文献求助10
53秒前
54秒前
儒雅涵易完成签到 ,获得积分10
55秒前
bai发布了新的文献求助10
56秒前
东流应助无限的灵安采纳,获得10
58秒前
59秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795398
求助须知:如何正确求助?哪些是违规求助? 3340392
关于积分的说明 10300052
捐赠科研通 3056907
什么是DOI,文献DOI怎么找? 1677307
邀请新用户注册赠送积分活动 805375
科研通“疑难数据库(出版商)”最低求助积分说明 762483