Machine learning-causal inference based on multi-omics data reveals the association of altered gut bacteria and bile acid metabolism with neonatal jaundice

代谢组 肠道菌群 生物 胆汁酸 代谢组学 微生物群 代谢物 黄疸 生理学 肠道微生物群 生物信息学 内科学 生物化学 医学
作者
Wan-Ling Chen,Peng Zhang,Xueli Zhang,Tiantian Xiao,Jianhai Zeng,Kaiping Guo,Huixian Qiu,Guoqiang Cheng,Zhangxing Wang,Wenhao Zhou,Shujuan Zeng,Mingbang Wang
出处
期刊:Gut microbes [Landes Bioscience]
卷期号:16 (1) 被引量:3
标识
DOI:10.1080/19490976.2024.2388805
摘要

Early identification of neonatal jaundice (NJ) appears to be essential to avoid bilirubin encephalopathy and neurological sequelae. The interaction between gut microbiota and metabolites plays an important role in early life. It is unclear whether the composition of the gut microbiota and metabolites can be used as an early indicator of NJ or to aid clinical decision-making. This study involved a total of 196 neonates and conducted two rounds of "discovery-validation" research on the gut microbiome-metabolome. It utilized methods of machine learning, causal inference, and clinical prediction model evaluation to assess the significance of gut microbiota and metabolites in classifying neonatal jaundice (NJ), as well as the potential causal relationships between corresponding clinical variables and NJ. In the discovery stage, NJ-associated gut microbiota, network modules, and metabolite composition were identified by gut microbiome-metabolome association analysis. The NJ-associated gut microbiota was closely related to bile acid metabolites. By Lasso machine learning assessment, we found that the gut bacteria were associated with abnormal bile acid metabolism. The machine learning-causal inference approach revealed that gut bacteria affected serum total bilirubin and NJ by influencing bile acid metabolism. NJ-associated gut bile acids are potential biomarkers of NJ, and clinical prediction models constructed based on these biomarkers have some clinical effects and the model may be used for disease risk prediction. In the validation stage, it was found that intestinal metabolites can predict NJ, and the machine learning-causal inference approach revealed that bile acid metabolites affected NJ itself by affecting the total bilirubin content. Intestinal bile acid metabolites are potential biomarkers of NJ. By applying machine learning-causal inference methods to gut microbiome-metabolome association studies, we found NJ-associated intestinal bacteria and their network modules and bile acid metabolite composition. The important role of intestinal bacteria and bile acid metabolites in NJ was determined, which can predict the risk of NJ.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
英姑应助咕咕采纳,获得10
1秒前
dasfdufos发布了新的文献求助10
2秒前
2秒前
虞无声发布了新的文献求助10
2秒前
徐多多完成签到,获得积分10
3秒前
samara发布了新的文献求助10
4秒前
corigicorgi发布了新的文献求助10
7秒前
发发发布了新的文献求助10
7秒前
7秒前
yiyue完成签到,获得积分20
8秒前
平常的毛豆应助power采纳,获得30
9秒前
小虾米完成签到,获得积分10
10秒前
唐笑发布了新的文献求助10
11秒前
牛牛完成签到,获得积分10
12秒前
13秒前
14秒前
nn完成签到,获得积分10
14秒前
axiao完成签到,获得积分10
15秒前
大力山槐完成签到,获得积分10
17秒前
程勋航完成签到,获得积分10
17秒前
我是老大应助舒心的绿草采纳,获得10
17秒前
寻找土豆的灯完成签到 ,获得积分10
17秒前
ty完成签到 ,获得积分20
19秒前
axiao发布了新的文献求助10
20秒前
20秒前
旺仔小王王w完成签到,获得积分10
20秒前
茶暖桉呀完成签到,获得积分10
22秒前
等待的契机完成签到,获得积分10
24秒前
一苇以航应助北彧采纳,获得20
24秒前
26秒前
茶暖桉呀发布了新的文献求助10
26秒前
小波应助欣喜的以丹采纳,获得20
26秒前
26秒前
17发布了新的文献求助10
27秒前
香蕉觅云应助奋斗清炎采纳,获得10
29秒前
汉堡包应助dudu采纳,获得10
29秒前
科研通AI5应助发发采纳,获得10
30秒前
31秒前
wait发布了新的文献求助10
31秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807074
求助须知:如何正确求助?哪些是违规求助? 3351860
关于积分的说明 10356237
捐赠科研通 3067840
什么是DOI,文献DOI怎么找? 1684762
邀请新用户注册赠送积分活动 809899
科研通“疑难数据库(出版商)”最低求助积分说明 765767