Assessment of Emphysema on X-ray Equivalent Dose Photon-Counting Detector CT

医学 核医学 图像质量 放射科 肺气肿 射线照相术 人工智能 内科学 计算机科学 图像(数学)
作者
Bjarne Kerber,Falko Ensle,Jonas Kroschke,Cecilia Strappa,Anna Rita Larici,Thomas Frauenfelder,Lisa Jungblut
出处
期刊:Investigative Radiology [Ovid Technologies (Wolters Kluwer)]
卷期号:60 (4): 291-298 被引量:6
标识
DOI:10.1097/rli.0000000000001128
摘要

Objectives The aim of this study was to evaluate the feasibility and efficacy of visual scoring, low-attenuation volume (LAV), and deep learning methods for estimating emphysema extent in x-ray dose photon-counting detector computed tomography (PCD-CT), aiming to explore future dose reduction potentials. Methods One hundred one prospectively enrolled patients underwent noncontrast low- and chest x-ray dose CT scans in the same study using PCD-CT. Overall image quality, sharpness, and noise, as well as visual emphysema pattern (no, trace, mild, moderate, confluent, and advanced destructive emphysema; as defined by the Fleischner Society), were independently assessed by 2 experienced radiologists for low- and x-ray dose images, followed by an expert consensus read. In the second step, automated emphysema quantification was performed using an established LAV algorithm with a threshold of −950 HU and a commercially available deep learning model for automated emphysema quantification. Automated estimations of emphysema extent were converted and compared with visual scoring ratings. Results X-ray dose scans exhibited a significantly lower computed tomography dose index than low-dose scans (low-dose: 0.66 ± 0.16 mGy, x-ray dose: 0.11 ± 0.03 mGy, P < 0.001). Interreader agreement between low- and x-ray dose for visual emphysema scoring was excellent (κ = 0.83). Visual emphysema scoring consensus showed good agreement between low-dose and x-ray dose scans (κ = 0.70), with significant and strong correlation (Spearman ρ = 0.79). Although trace emphysema was underestimated in x-ray dose scans, there was no significant difference in the detection of higher-grade (mild to advanced destructive) emphysema ( P = 0.125) between the 2 scan doses. Although predicted emphysema volumes on x-ray dose scans for the LAV method showed strong and the deep learning model excellent significant correlations with predictions on low-dose scans, both methods significantly overestimated emphysema volumes on lower quality scans ( P < 0.001), with the deep learning model being more robust. Further, deep learning emphysema severity estimations showed higher agreement (κ = 0.65) and correlation (Spearman ρ = 0.64) with visual scoring for low-dose scans than LAV predictions (κ = 0.48, Spearman ρ = 0.45). Conclusions The severity of emphysema can be reliably estimated using visual scoring on CT scans performed with x-ray equivalent doses on a PCD-CT. A deep learning algorithm demonstrated good agreement and strong correlation with the visual scoring method on low-dose scans. However, both the deep learning and LAV algorithms overestimated emphysema extent on x-ray dose scans. Nonetheless, x-ray equivalent radiation dose scans may revolutionize the detection and monitoring of disease in chronic obstructive pulmonary disease patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助queer采纳,获得10
刚刚
zyq完成签到,获得积分10
刚刚
559_完成签到,获得积分10
刚刚
titi完成签到,获得积分10
刚刚
加鲁鲁lu完成签到,获得积分10
2秒前
Wnnnn发布了新的文献求助10
2秒前
慕青应助onion采纳,获得10
3秒前
科研通AI6应助震动的戒指采纳,获得10
4秒前
5秒前
詹亚雄完成签到,获得积分10
5秒前
8秒前
科研通AI6应助成就的发箍采纳,获得10
8秒前
9秒前
9秒前
小二郎应助lankeren采纳,获得10
9秒前
9秒前
丘比特应助葉芊羽采纳,获得10
10秒前
壑舟完成签到,获得积分10
10秒前
圆锥香蕉应助尊敬的凝丹采纳,获得20
11秒前
YIXIN完成签到,获得积分10
11秒前
11秒前
流云完成签到,获得积分10
11秒前
12秒前
12秒前
sedrakyan发布了新的文献求助10
13秒前
Sunnig盈完成签到,获得积分10
13秒前
酷酷紫蓝发布了新的文献求助10
13秒前
CAO发布了新的文献求助10
14秒前
15秒前
英俊的铭应助悲伤汉堡包采纳,获得10
15秒前
Jesse发布了新的文献求助10
15秒前
15秒前
ViVi水泥要干喽完成签到 ,获得积分10
16秒前
MY完成签到,获得积分10
16秒前
平淡远山完成签到,获得积分10
17秒前
卷羊发布了新的文献求助10
18秒前
18秒前
18秒前
程瑞哲完成签到,获得积分10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601001
求助须知:如何正确求助?哪些是违规求助? 4686544
关于积分的说明 14844858
捐赠科研通 4679334
什么是DOI,文献DOI怎么找? 2539149
邀请新用户注册赠送积分活动 1506013
关于科研通互助平台的介绍 1471253