Introducing a time-efficient workflow for processing IMU data to identify sport-specific movement patterns

惯性测量装置 计算机科学 加速度计 计算机视觉 人工智能 滤波器(信号处理) 陀螺仪 工作流程 可穿戴计算机 噪音(视频) 过程(计算) 加速度 职位(财务) 工程类 物理 航空航天工程 嵌入式系统 图像(数学) 操作系统 数据库 经济 经典力学 财务
作者
Basil Achermann,Katja Oberhofer,Silvio Lorenzetti
出处
期刊:Current issues in sport science [Innsbruck University Press]
卷期号:8 (2): 060-060 被引量:2
标识
DOI:10.36950/2023.2ciss060
摘要

Introduction The use of inertial measurement unit (IMU) has become popular in sports assessment. New IMU devices may make the monitoring process easier; however, their validity and reliability should be established prior to widespread use. IMU devices use a combination of gyroscopic and accelerometer data which allow the derivation of velocity and position vectors by integrating the data over time. Because the process of time integration suffers from time varying biases and noise, the resulting velocity and position vectors are prone to drift after a few seconds. This must be accounted for when processing data from IMUs. Aim Motivated by the variety of approaches to IMU-based human motion tracking, the aim of this paper is to deliver a report of the author’s experience in processing and handling acceleration data from a wearable IMU sensor recorded during resistance training and present a workflow to identify specific movement patterns across different sports. Methods Given acceleration data from a wearable sensor during sports practice, the workflow to derive velocity and position measures of specific movement patterns is divided into the following seven steps: 1) Rough cropping of region of interest (ROI). 2) Application of low pass filter to remove jittering upon visual inspection. Depending on ROI length, a detrend filter should be applied on the integrated position and maybe on the velocity data to correct for drift. 3) Visual analysis of characteristics of at least one movement pattern (more if the pattern shows a high inter-repetition variability) to identify key events (e.g. maximal velocity). 4) Automatically find and count key events along ROI. 5) Reassess characteristics of movement pattern to determine other relevant events. 6) Next, segmentation of ROI based on selected events and integration of individual sections to avoid drift. The aim is to integrate the smallest pieces possible. 7) Finally, check to make sure that segmentation worked correctly (e.g. correct number of repetitions, resulting values in a possible range). Results Acceleration data was captured with an Apple Watch 7 (Apple Inc. California) using the SensorLog app streaming to a customized node.js server application. For the processing and visualization of the data, the programming language Python with usage of the Pandas and SciPy libraries were utilized. The velocity and position data were determined by finding the integral of the acceleration and velocity respectively. Using the previous mentioned workflow 306 repetitions of the back squat executed by 11 recreational athletes (w: 5/m: 6, age: 22-37, weight:58-90kg) were successful segmented. Discussion The technology underlying commercial IMU sensors are often not communicated transparently. Thus, it is important to properly study the task of calibration the IMU and calculating the vertical component before using it for sport science measurements. Furthermore, it is rarely the case that the movement pattern remains the same over each training session. Therefore, characteristics of the movement pattern must be studied thoroughly to create a robust identification criterium. By applying the presented workflow researcher have a structured, easy to apply and time efficient approach to analyze recorded acceleration data on different sport-specific movement patterns.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
zz完成签到 ,获得积分10
1秒前
2秒前
我是老大应助冰_采纳,获得10
2秒前
gzf完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助50
4秒前
斯文败类应助柏林采纳,获得10
5秒前
超帅妙竹发布了新的文献求助10
5秒前
haeyan发布了新的文献求助10
5秒前
5秒前
6秒前
LALA发布了新的文献求助10
7秒前
碧方完成签到 ,获得积分10
8秒前
单薄夜梅完成签到,获得积分20
8秒前
jiaojinghao关注了科研通微信公众号
8秒前
10秒前
xo80完成签到 ,获得积分10
10秒前
小二郎应助Can采纳,获得30
10秒前
11秒前
威武曼安完成签到,获得积分10
11秒前
紧张的紫文完成签到,获得积分10
12秒前
俊逸成危发布了新的文献求助10
13秒前
13秒前
杨轩关注了科研通微信公众号
13秒前
14秒前
北过完成签到,获得积分10
14秒前
照云211完成签到 ,获得积分10
15秒前
Z_Miaom发布了新的文献求助10
15秒前
Niniiii发布了新的文献求助30
15秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
DO完成签到,获得积分10
16秒前
111完成签到 ,获得积分10
16秒前
大个应助迷人的山灵采纳,获得10
17秒前
18秒前
18秒前
zzzzg发布了新的文献求助30
18秒前
张安安完成签到,获得积分10
18秒前
小暑完成签到 ,获得积分10
18秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132497
求助须知:如何正确求助?哪些是违规求助? 4333918
关于积分的说明 13502513
捐赠科研通 4170952
什么是DOI,文献DOI怎么找? 2286755
邀请新用户注册赠送积分活动 1287645
关于科研通互助平台的介绍 1228540