Exploring AI Hallucinations of ChatGPT

汇报 引用 相关性(法律) 计算机科学 生成语法 情报检索 心理学 自然语言处理 人工智能 医学教育 医学 图书馆学 政治学 法学
作者
Adam Cheng,Vikhashni Nagesh,Susan Eller,David Grant,Yiqun Lin
出处
期刊:Simulation in healthcare : journal of the Society for Simulation in Healthcare [Ovid Technologies (Wolters Kluwer)]
卷期号:20 (6): 413-418 被引量:2
标识
DOI:10.1097/sih.0000000000000877
摘要

Introduction Large language model-based generative AI tools, such as the Chat Generative Pre-trained Transformer (ChatGPT) platform, have been used to assist with writing academic manuscripts. Little is known about ChatGPT's ability to accurately cite relevant references in health care simulation-related scholarly manuscripts. In this study, we sought to: (1) determine the reference accuracy and citation relevance among health care simulation debriefing articles generated by 2 different models of ChatGPT and (2) determine if ChatGPT models can be trained with specific prompts to improve reference accuracy and citation relevance. Methods The ChatGPT-4 and ChatGPT o1 models were asked to generate scholarly articles with appropriate references based upon three different article titles about health care simulation debriefing. Five articles with references were generated for each article title—3 ChatGPT-4 training conditions and 2 ChatGPT o1 training conditions. Each article was assessed independently by 2 blinded reviewers for reference accuracy and citation relevance. Results Fifteen articles were generated in total: 9 articles by ChatGPT-4 and 6 articles by ChatGPT o1. A total of 60.4% of the 303 references generated across 5 training conditions were classified as accurate, with no significant difference in reference accuracy between the 5 conditions. A total of 22.2% of the 451 citations were classified as highly relevant, with no significant difference in citation relevance across the 5 conditions. Conclusions Among debriefing articles generated by ChatGPT-4 and ChatGPT o1, both ChatGPT models are unreliable with respect to reference accuracy and citation relevance. Reference accuracy and citation relevance for debriefing articles do not improve even with some degree of training built into ChatGPT prompts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Megan发布了新的文献求助10
刚刚
共享精神应助MrCoolWu采纳,获得10
刚刚
Kate完成签到,获得积分10
刚刚
刚刚
刘一一一一一一完成签到,获得积分10
1秒前
1秒前
aaaaaa发布了新的文献求助10
1秒前
1秒前
上官尔芙完成签到,获得积分10
2秒前
yang发布了新的文献求助10
2秒前
FlipFlops发布了新的文献求助20
2秒前
背后的网络完成签到,获得积分20
3秒前
Liuyicong完成签到,获得积分10
3秒前
4秒前
蔡浩宇完成签到,获得积分10
4秒前
4秒前
myn1990发布了新的文献求助10
4秒前
求助人员发布了新的文献求助10
4秒前
孙麦侯发布了新的文献求助10
4秒前
清爽雁开发布了新的文献求助10
5秒前
Megalbox发布了新的文献求助10
5秒前
烟花应助欢呼的冬寒采纳,获得10
5秒前
uiui应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
大白应助科研通管家采纳,获得20
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
复苏应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
852应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5668089
求助须知:如何正确求助?哪些是违规求助? 4889666
关于积分的说明 15123226
捐赠科研通 4826981
什么是DOI,文献DOI怎么找? 2584479
邀请新用户注册赠送积分活动 1538299
关于科研通互助平台的介绍 1496624