The Identification and Severity Staging of Chronic Obstructive Pulmonary Disease Using Quantitative CT Parameters, Radiomics Features, and Deep Learning Features

医学 慢性阻塞性肺病 队列 无线电技术 逻辑回归 放射科 回顾性队列研究 内科学
作者
Shengchuan Feng,Wenxiu Zhang,Ran Zhang,Yuqiong Yang,Fengyan Wang,Chengyu Miao,Zizheng Chen,Kai Yang,Qing Yao,Qing Xuan Liang,Huijun Zhao,Yuting Chen,Cuixia Liang,Xiaoyun Liang,Rongchang Chen,Zhenyu Liang
出处
期刊:Respiration [S. Karger AG]
卷期号:: 1-13
标识
DOI:10.1159/000548595
摘要

Introduction: The aim of the study was to evaluate the value of quantitative CT (QCT) parameters, radiomics features, and deep learning (DL) features based on inspiratory and expiratory CT for the identification and severity staging of chronic obstructive pulmonary disease (COPD). Methods: This retrospective analysis included 223 COPD patients and 59 healthy controls from the Guangzhou cohort. We stratified the participants into a training cohort and a testing cohort (7:3) and extracted DL features based on VGG-16 method, radiomics features based on pyradiomics package, and QCT parameters based on NeuLungCARE software. The logistic regression method was employed to construct models for the identification and severity staging of COPD. The Shenzhen cohort was used as the external validation cohort to assess the generalizability of the models. Results: In the COPD identification models, model 5-B1 (the QCT combined with DL model in biphasic CT) showed the best predictive performance with AUC of 0.920 and 0.897 in testing cohort and external validation cohort, respectively. In the COPD severity staging models, the predictive performance of model 4-B2 (the model combining QCT with radiomics features in biphasic CT) and model 5-B2 (the model combining QCT with DL features in biphasic CT) was superior to that of the other models. Conclusion: This biphasic CT-based multimodal approach integrating QCT, radiomics, or DL features offers a clinically valuable tool for COPD identification and severity staging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助念心采纳,获得30
1秒前
1秒前
1秒前
Yangon发布了新的文献求助10
2秒前
LING完成签到,获得积分10
2秒前
111发布了新的文献求助10
2秒前
神勇惜筠完成签到 ,获得积分10
2秒前
科研通AI6应助ray采纳,获得30
3秒前
Sphere发布了新的文献求助10
3秒前
3秒前
JamesPei应助吕景宽采纳,获得10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
小马甲应助房谷槐采纳,获得10
5秒前
5秒前
念心完成签到,获得积分10
5秒前
lu发布了新的文献求助10
5秒前
脑洞疼应助怕黑的凝旋采纳,获得10
5秒前
MUto发布了新的文献求助20
5秒前
6秒前
不知道发布了新的文献求助10
6秒前
6秒前
TheSail关注了科研通微信公众号
6秒前
6秒前
6秒前
hellzhu完成签到,获得积分10
7秒前
wahaha发布了新的文献求助10
7秒前
大个应助无奈敏采纳,获得10
7秒前
7秒前
galaxy完成签到,获得积分10
7秒前
LHH完成签到 ,获得积分10
8秒前
8秒前
young完成签到,获得积分10
8秒前
科研通AI6应助wu采纳,获得30
8秒前
顺心飞雪完成签到,获得积分10
8秒前
完美世界应助小胭胭采纳,获得10
8秒前
sunru发布了新的文献求助10
8秒前
云ch发布了新的文献求助10
9秒前
Hello应助cjypdf采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5429451
求助须知:如何正确求助?哪些是违规求助? 4542928
关于积分的说明 14183617
捐赠科研通 4460886
什么是DOI,文献DOI怎么找? 2445912
邀请新用户注册赠送积分活动 1437068
关于科研通互助平台的介绍 1414191