Imbalanced few-shot bearing fault diagnosis via hybrid enhanced VAE-WGAN and attention-guided WDCNN

方位(导航) 计算机科学 断层(地质) 人工智能 一次性 模式识别(心理学) 弹丸 计算机视觉 地质学 材料科学 地震学 工程类 机械工程 冶金
作者
Ya Xie,Lei Zhang,H Liu,Canli Hu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (8): 086134-086134
标识
DOI:10.1088/1361-6501/adf98d
摘要

Abstract In order to address the issue that the traditional neural network models fail to train adequately and achieve unsatisfactory diagnostic results due to the scarcity and imbalance of rolling bearing fault data samples in practical industrial scenarios, this paper proposes a fault diagnosis method that combines an improved generative network (variational autoencoder with Wasserstein generative adversarial networks (VAE-WGAN)) with the wide convolutional neural network (WDCNN) based on the convolutional block attention module (CBAM). On the basis of the existing generative network model VAE-WGAN, this method improves the feature learning capability of the generative network by incorporating the self-attention mechanism and a spectral information loss function. Furthermore, considering the limited diagnostic performance of the features from single-domain of raw vibration signal in real-world industrial scenarios, this method innovatively designs a dual-channel network structure that integrates time-frequency domain features, building upon the original WDCNN network model. Additionally, a CBAM is introduced to enhance the network’s feature extraction ability. The experimental results demonstrate that the model integrating the enhanced VAE-WGAN with WDCNN-CBAM-DUAL exhibits superior performance on datasets characterized by few samples and data imbalance. In comparison to other generative network models, it showcases stronger learning and feature extraction capabilities. Notably, it can effectively accomplish the bearing fault diagnosis task even under conditions of insufficient data samples, unbalanced samples, and noisy data. This indicates its promising applicability in complex industrial environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Noki发布了新的文献求助10
刚刚
ppw应助高小明采纳,获得10
1秒前
普通用户30号完成签到 ,获得积分10
1秒前
1秒前
枫asaki发布了新的文献求助10
1秒前
领导范儿应助蜜獾采纳,获得10
2秒前
VitoLi完成签到,获得积分10
2秒前
星辰大海应助研时友采纳,获得10
2秒前
漆漆完成签到,获得积分10
2秒前
刘若鑫发布了新的文献求助10
2秒前
CX330完成签到,获得积分10
2秒前
2秒前
3秒前
hxw2521完成签到,获得积分10
3秒前
3秒前
3秒前
夏天完成签到,获得积分10
3秒前
情怀应助503503_采纳,获得10
3秒前
4秒前
4秒前
theking发布了新的文献求助30
4秒前
科研巨额发布了新的文献求助10
4秒前
善学以致用应助yyyy采纳,获得10
4秒前
5秒前
星星星星完成签到,获得积分10
5秒前
领导范儿应助张凯月采纳,获得10
5秒前
xzs关闭了xzs文献求助
5秒前
5秒前
棋士应助hua采纳,获得10
6秒前
李爱国应助陈陈采纳,获得10
6秒前
Queena发布了新的文献求助20
6秒前
6秒前
6秒前
炜博发布了新的文献求助20
6秒前
所所应助欣慰元蝶采纳,获得10
7秒前
淡定的奇异果完成签到,获得积分10
7秒前
7秒前
未夕晴完成签到,获得积分10
8秒前
8秒前
淡然寄琴发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5710497
求助须知:如何正确求助?哪些是违规求助? 5199402
关于积分的说明 15260984
捐赠科研通 4863101
什么是DOI,文献DOI怎么找? 2610419
邀请新用户注册赠送积分活动 1560773
关于科研通互助平台的介绍 1518409