Expert-Level Detection of Epilepsy Markers in EEG on Short and Long Timescales

癫痫 脑电图 心理学 听力学 神经科学 模式识别(心理学) 计算机科学 医学 认知心理学
作者
Jun Li,Daniel M. Goldenholz,Moritz Alkofer,Chenxi Sun,Fábio A. Nascimento,Jonathan J. Halford,Brian K. Dean,Mattia Galanti,Aaron F. Struck,Adam Greenblatt,Alice Lam,Aline Herlopian,Chinasa Nwankwo,Dan Weber,Douglas Maus,Hiba A. Haider,Ioannis Karakis,Ji Yeoun Yoo,Marcus Ng,Olga Selioutski
标识
DOI:10.1056/aioa2401221
摘要

Epileptiform discharges, or spikes, within electroencephalogram (EEG) recordings are essential for diagnosing epilepsy and localizing seizure origins. Artificial intelligence (AI) offers a promising approach to automating detection, but current models are often hindered by artifact-related false positives and often target either event- or EEG-level classification, thus limiting clinical utility. We developed SpikeNet2, a deep-learning model based on a residual network architecture, and enhanced it with hard-negative mining to reduce false positives. Our study analyzed 17,812 EEG recordings from 13,523 patients across multiple institutions, including Massachusetts General Brigham (MGB) hospitals. Data from the Human Epilepsy Project (HEP) and SCORE-AI (SAI) were also included. A total of 32,433 event-level samples, labeled by experts, were used for training and evaluation. Performance was assessed using the area under the receiver operating characteristic curve (AUROC), the area under the precision-recall curve (AUPRC), calibration error, and a modified area under the curve (mAUC) metric. The model's generalizability was evaluated using external datasets. SpikeNet2 demonstrated strong performance in event-level spike detection, achieving an AUROC of 0.973 and an AUPRC of 0.995, with 44% of experts surpassing the model on the MGB dataset. In external validation, the model achieved an AUROC of 0.942 and an AUPRC of 0.948 on the HEP dataset. For EEG-level classification, SpikeNet2 recorded an AUROC of 0.958 and an AUPRC of 0.959 on the MGB dataset, an AUROC of 0.888 and an AUPRC of 0.823 on the HEP dataset, and an AUROC of 0.995 and an AUPRC of 0.991 on the SAI dataset, with 32% of experts outperforming the model. The false-positive rate was reduced to an average of nine spikes per hour. SpikeNet2 offers expert-level accuracy in both event-level spike detection and EEG-level classification, while significantly reducing false positives. Its dual functionality and robust performance across diverse datasets make it a promising tool for clinical and telemedicine applications, particularly in resource-limited settings. (Funded by the National Institutes of Health and others.).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮生完成签到 ,获得积分10
1秒前
小卷粉完成签到 ,获得积分10
1秒前
2秒前
2秒前
乐乐应助牛马采纳,获得10
2秒前
顾北完成签到,获得积分10
2秒前
饱满秋白发布了新的文献求助10
2秒前
三金发布了新的文献求助30
3秒前
鹿茸发布了新的文献求助10
3秒前
souther完成签到,获得积分0
3秒前
月亮不营业完成签到 ,获得积分10
3秒前
ZHAYUE发布了新的文献求助10
6秒前
6秒前
我的miemie应助GLORIA采纳,获得20
6秒前
Sonder完成签到 ,获得积分10
6秒前
朱光辉完成签到,获得积分10
8秒前
欧尼酱完成签到,获得积分20
8秒前
vlots应助dy1994采纳,获得30
8秒前
踏实口红发布了新的文献求助10
9秒前
MOREMO发布了新的文献求助10
10秒前
11秒前
情怀应助爱笑的呵呵先生采纳,获得10
12秒前
豆豆完成签到 ,获得积分10
12秒前
zoi99发布了新的文献求助10
13秒前
丘比特应助焚天尘殇采纳,获得10
13秒前
14秒前
踏实口红完成签到,获得积分10
14秒前
15秒前
ying发布了新的文献求助10
18秒前
ddup完成签到,获得积分10
19秒前
20秒前
EricXu发布了新的文献求助10
21秒前
22秒前
cz完成签到,获得积分10
22秒前
yuliuism完成签到,获得积分10
23秒前
Kiki发布了新的文献求助10
23秒前
24秒前
cz发布了新的文献求助10
26秒前
幸福的杨小夕完成签到,获得积分10
26秒前
26秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5120563
求助须知:如何正确求助?哪些是违规求助? 4325901
关于积分的说明 13478119
捐赠科研通 4159552
什么是DOI,文献DOI怎么找? 2279551
邀请新用户注册赠送积分活动 1281381
关于科研通互助平台的介绍 1220210