Alignment and Analysis of a Disparately Acquired Multibatch Metabolomics Study of Maternal Pregnancy Samples

代谢组学 代谢组 代谢物 色谱法 化学 生物信息学 生物 生物化学
作者
Hani Habra,Maureen Kachman,Vasantha Padmanabhan,Charles Burant,Alla Karnovsky,Jennifer L. Meijer
出处
期刊:Journal of Proteome Research [American Chemical Society]
卷期号:21 (12): 2936-2946 被引量:6
标识
DOI:10.1021/acs.jproteome.2c00371
摘要

Untargeted liquid chromatography-mass spectrometry metabolomics studies are typically performed under roughly identical experimental settings. Measurements acquired with different LC-MS protocols or following extended time intervals harbor significant variation in retention times and spectral abundances due to altered chromatographic, spectrometric, and other factors, raising many data analysis challenges. We developed a computational workflow for merging and harmonizing metabolomics data acquired under disparate LC-MS conditions. Plasma metabolite profiles were collected from two sets of maternal subjects three years apart using distinct instruments and LC-MS procedures. Metabolomics features were aligned using metabCombiner to generate lists of compounds detected across all experimental batches. We applied data set-specific normalization methods to remove interbatch and interexperimental variation in spectral intensities, enabling statistical analysis on the assembled data matrix. Bioinformatics analyses revealed large-scale metabolic changes in maternal plasma between the first and third trimesters of pregnancy and between maternal plasma and umbilical cord blood. We observed increases in steroid hormones and free fatty acids from the first trimester to term of gestation, along with decreases in amino acids coupled to increased levels in cord blood. This work demonstrates the viability of integrating nonidentically acquired LC-MS metabolomics data and its utility in unconventional metabolomics study designs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
1秒前
abjz发布了新的文献求助10
2秒前
2秒前
2秒前
乐乐应助空白采纳,获得10
3秒前
3秒前
顾矜应助初见采纳,获得10
4秒前
耶大王关注了科研通微信公众号
4秒前
隐形曼青应助石化的海报采纳,获得10
4秒前
机灵凌雪完成签到 ,获得积分10
4秒前
123完成签到,获得积分10
5秒前
生动的安雁完成签到,获得积分10
5秒前
5秒前
5秒前
ZR14124发布了新的文献求助10
6秒前
8秒前
充电宝应助含糊的钢笔采纳,获得10
8秒前
稳重的含灵完成签到,获得积分10
8秒前
司空懿轩完成签到,获得积分10
9秒前
10秒前
11秒前
lnyi完成签到,获得积分20
11秒前
笑笑完成签到,获得积分10
11秒前
潇潇发布了新的文献求助10
12秒前
12秒前
聪明无施完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
13秒前
14秒前
脑洞疼应助老婶子采纳,获得10
14秒前
不舍天真完成签到,获得积分10
14秒前
15秒前
15秒前
迪歪歪发布了新的文献求助10
15秒前
憨憨发布了新的文献求助10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5713080
求助须知:如何正确求助?哪些是违规求助? 5213364
关于积分的说明 15269379
捐赠科研通 4864862
什么是DOI,文献DOI怎么找? 2611713
邀请新用户注册赠送积分活动 1561997
关于科研通互助平台的介绍 1519171