In vivo delivery of CRISPR-Cas9 genome editing components for therapeutic applications

清脆的 基因组编辑 Cas9 计算生物学 基因组 生物 计算机科学 遗传学 基因
作者
Kun Huang,Daniel Zapata,Yan Tang,Yong Teng,Yamin Li
出处
期刊:Biomaterials [Elsevier BV]
卷期号:291: 121876-121876 被引量:27
标识
DOI:10.1016/j.biomaterials.2022.121876
摘要

Since its mechanism discovery in 2012 and the first application for mammalian genome editing in 2013, CRISPR-Cas9 has revolutionized the genome engineering field and created countless opportunities in both basic science and translational medicine. The first clinical trial of CRISPR therapeutics was initiated in 2016, which employed ex vivo CRISPR-Cas9 edited PD-1 knockout T cells for the treatment of non-small cell lung cancer. So far there have been dozens of clinical trials registered on ClinicalTrials.gov in regard to using the CRISPR-Cas9 genome editing as the main intervention for therapeutic applications; however, most of these studies use ex vivo genome editing approach, and only a few apply the in vivo editing strategy. Compared to ex vivo editing, in vivo genome editing bypasses tedious procedures related to cell isolation, maintenance, selection, and transplantation. It is also applicable to a wide range of diseases and disorders. The main obstacles to the successful translation of in vivo therapeutic genome editing include the lack of safe and efficient delivery system and safety concerns resulting from the off-target effects. In this review, we highlight the therapeutic applications of in vivo genome editing mediated by the CRISPR-Cas9 system. Following a brief introduction of the history, biology, and functionality of CRISPR-Cas9, we showcase a series of exemplary studies in regard to the design and implementation of in vivo genome editing systems that target the brain, inner ear, eye, heart, liver, lung, muscle, skin, immune system, and tumor. Current challenges and opportunities in the field of CRISPR-enabled therapeutic in vivo genome editing are also discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助汎影采纳,获得10
1秒前
TT完成签到,获得积分20
1秒前
1秒前
1秒前
明亮的智宸完成签到,获得积分10
1秒前
Rock发布了新的文献求助10
1秒前
啊啊啊完成签到,获得积分20
1秒前
我是老大应助星睿采纳,获得10
2秒前
3秒前
沙漏完成签到,获得积分10
4秒前
4秒前
怡轻肝发布了新的文献求助10
5秒前
李倇仪完成签到,获得积分10
5秒前
6秒前
Stella发布了新的文献求助10
7秒前
2滴水完成签到,获得积分10
7秒前
plasmid完成签到,获得积分10
7秒前
8秒前
陆王牛马完成签到 ,获得积分10
9秒前
大模型应助爱喝冰可乐采纳,获得10
10秒前
初七123完成签到,获得积分10
10秒前
11秒前
希望天下0贩的0应助汎影采纳,获得10
11秒前
zzz完成签到,获得积分10
11秒前
12秒前
星睿发布了新的文献求助10
12秒前
善学以致用应助精明寒蕾采纳,获得10
13秒前
陆沉应助这瓜不卖采纳,获得10
13秒前
Ava应助爱蜜莉亚QAQ采纳,获得10
13秒前
Ch_7发布了新的文献求助10
15秒前
Gauss完成签到,获得积分0
15秒前
龙龙ff11_完成签到,获得积分10
17秒前
这瓜不卖完成签到,获得积分10
18秒前
Orange应助周周采纳,获得10
18秒前
Ava应助Rock采纳,获得10
19秒前
隐形曼青应助汎影采纳,获得10
19秒前
爪人猫完成签到,获得积分10
20秒前
何一凡发布了新的文献求助10
20秒前
20秒前
今后应助李喜喜采纳,获得10
20秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3823316
求助须知:如何正确求助?哪些是违规求助? 3365761
关于积分的说明 10437289
捐赠科研通 3084882
什么是DOI,文献DOI怎么找? 1697037
邀请新用户注册赠送积分活动 816159
科研通“疑难数据库(出版商)”最低求助积分说明 769436