A “traffic light” signal ratiometric fluorescence sensor for highly sensitive and selective detection of dopamine

荧光 多巴胺 化学 信号(编程语言) 计算机科学 神经科学 生物 光学 物理 程序设计语言
作者
Xue Dong,Zhe Sun,Lei Han,Ling Yu,Bang Lin Li,Nian Bing Li,Hong Qun Luo
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:372: 132668-132668 被引量:14
标识
DOI:10.1016/j.snb.2022.132668
摘要

As a neurotransmitter with important biological properties, dopamine (DA) plays a vital role in the nervous system of the human body. In this paper, Tb-dipicolinic acid (DPA), Eu-DPA, and Tb/Eu-DPA with green, red, and pale-yellow fluorescence are synthesized to construct “traffic light” sensor for detecting DA, based on the characteristic reaction of resorcinol (Rs) and DA. Through the energy transfer and quenching effects, the fluorescence signals of the “traffic light” sensor are weakened, while the blue fluorescent product is enhanced. Moreover, the sensing system shows obvious chroma change from green, red, and pale-yellow to blue, respectively. The ratiometric fluorescence signal change and chroma change enable the detection of DA with good sensitivity, accuracy, high selectivity and anti-interference ability. In addition, the method has good application for DA detection in serum samples and injection. More importantly, this study combines the “traffic light” sensor with characteristic reaction of Rs and DA for the first time, which not only broadens the applications of detecting DA in the initial monitoring and early clinical diagnosis of related diseases, but also provides a new idea for designing optical sensors with excellent performance based on characteristic reaction. ● The “traffic light” probes with excellent optical properties are simply prepared. ● DA is detected using “traffic light” sensor coupled with the reaction of Rs and DA. ● The sensitivity of detecting DA is improved by ratiometric fluorescence method. ● Selectivity is enhanced by introducing the characteristic reaction of Rs and DA. ● The fluorescence colors are changed visibly from green, red, pale-yellow to blue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
李健的小迷弟应助高晨焜采纳,获得10
2秒前
笨笨chen发布了新的文献求助10
2秒前
所所应助大方元风采纳,获得10
3秒前
SXR完成签到,获得积分10
3秒前
Naomi发布了新的文献求助10
3秒前
坚强的橘子完成签到 ,获得积分10
4秒前
6秒前
爱吃粑粑发布了新的文献求助10
6秒前
yun完成签到 ,获得积分10
6秒前
MM发布了新的文献求助10
6秒前
6秒前
7秒前
李子园完成签到,获得积分10
8秒前
XRT关闭了XRT文献求助
8秒前
1436494741发布了新的文献求助10
8秒前
传奇3应助zyc采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
安详的白山完成签到,获得积分10
10秒前
10秒前
10秒前
星辰大海应助饱满的荧采纳,获得10
10秒前
sjll发布了新的文献求助10
11秒前
可乐加糖发布了新的文献求助30
11秒前
wuhan完成签到,获得积分10
11秒前
qingmang发布了新的文献求助10
11秒前
11秒前
Keep完成签到,获得积分10
12秒前
12秒前
Bigbiglei完成签到,获得积分10
12秒前
12秒前
风趣思山完成签到,获得积分20
13秒前
1234完成签到,获得积分10
13秒前
爱吃粑粑完成签到,获得积分10
13秒前
粗心的忆之完成签到,获得积分10
13秒前
HOAN应助about采纳,获得150
14秒前
ncq发布了新的文献求助20
14秒前
ding应助冷酷不二采纳,获得10
15秒前
榴莲奶黄包完成签到,获得积分10
15秒前
风之子发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5709515
求助须知:如何正确求助?哪些是违规求助? 5195274
关于积分的说明 15257183
捐赠科研通 4862259
什么是DOI,文献DOI怎么找? 2609977
邀请新用户注册赠送积分活动 1560356
关于科研通互助平台的介绍 1518073