IoT Edge-Computing-Enabled Efficient Localization via Robust Optimal Estimation

计算机科学 计算复杂性理论 GSM演进的增强数据速率 数学优化 边缘计算 线性规划 无线传感器网络 最优化问题 凸优化 算法 正多边形 数学 人工智能 计算机网络 几何学
作者
Shuang Qin,Xiansheng Guo
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (1): 66-80 被引量:1
标识
DOI:10.1109/jiot.2022.3200095
摘要

Source localization within wireless sensor networks (WSNs) is one of the critical technologies in the Internet of Things (IoT). As the number of network nodes increases, so does the amount of data and computational requirement. It is imperative to introduce edge computing. However, there are still two issues when running existing wireless location algorithms on edge nodes: 1) conventional low-complexity approaches are easily affected by the bias generated in complex environments, leading to low locating accuracy and 2) the optimization algorithms considering the bias have good performances, but they are calculation-efficiency low on edge nodes. This study proposes a computationally efficient and high-precision location method to tackle the troubles. Precisely, we first introduce our previous research to construct a bias-considered nonconvex problem with a linear objective. Then, we propose an angle-assisted Taylor series with zero truncation error to linearize the second-order cone (SOC) constraint in the established problem. Next, we resort to the mini-max criterion to eliminate the angular uncertainty and get a robust linear programming (LP) problem with an optimal solution. So far, we have obtained a convex problem of low complexity. To ensure the calculated efficiency of the proposed problem on edge nodes, we proceed to give the solving process of the problem. Moreover, we provide a constraints tracking mechanism to reduce the number of iterations in the solution procedure, improving computational efficiency. Simulations and experiments demonstrate that the proposed method with similar locating accuracy to state-of-the-art optimization algorithms exhibits much higher computing efficiency on edge nodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李知恩完成签到,获得积分10
1秒前
人间理想完成签到,获得积分10
1秒前
沉静镜子完成签到,获得积分10
1秒前
3秒前
3秒前
猪猪hero应助沉静镜子采纳,获得10
5秒前
jennica发布了新的文献求助10
6秒前
害羞雨南完成签到,获得积分10
8秒前
9秒前
斑马发布了新的文献求助10
10秒前
11秒前
彭于晏应助hudu采纳,获得10
11秒前
温暖又柔完成签到,获得积分20
11秒前
酷波er应助超帅的薯片采纳,获得10
12秒前
jennica完成签到,获得积分10
15秒前
奶茶咖啡冻完成签到,获得积分10
17秒前
可爱的函函应助hanna采纳,获得10
17秒前
李健的粉丝团团长应助SXM采纳,获得10
17秒前
19秒前
20秒前
哈哈哈哈完成签到,获得积分20
20秒前
巫马百招完成签到,获得积分10
22秒前
李健的小迷弟应助大菠萝采纳,获得10
23秒前
stoneff612发布了新的文献求助10
23秒前
25秒前
26秒前
freyaaaaa留下了新的社区评论
27秒前
27秒前
hwq123完成签到,获得积分10
29秒前
30秒前
超级涔完成签到 ,获得积分10
31秒前
31秒前
起年完成签到,获得积分10
31秒前
路人甲发布了新的文献求助10
31秒前
32秒前
常大美女发布了新的文献求助10
33秒前
33秒前
星辰大海应助yu采纳,获得10
33秒前
35秒前
吴天楚完成签到,获得积分10
36秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818655
求助须知:如何正确求助?哪些是违规求助? 3361728
关于积分的说明 10413958
捐赠科研通 3079935
什么是DOI,文献DOI怎么找? 1693704
邀请新用户注册赠送积分活动 814550
科研通“疑难数据库(出版商)”最低求助积分说明 768248