Soil organic carbon stock responded more sensitively to degradation in alpine meadows than in alpine steppes on the Qinghai‐Tibetan Plateau

草原 草原 草地退化 环境科学 土壤碳 高山气候 高原(数学) 碳循环 自然地理学 生态学 土壤科学 生态系统 农学 地理 土壤水分 生物 数学分析 数学
作者
Zhenchao Zhang,Tianyu Zhan,Yanpeng Li,Yi Wang,Ting Yu,Juan Sun
出处
期刊:Land Degradation & Development [Wiley]
卷期号:34 (2): 353-361 被引量:7
标识
DOI:10.1002/ldr.4463
摘要

Abstract Grassland degradation is commonly thought to cause soil organic carbon (SOC) change, and the response of SOC stock to degradation is highly dependent on grassland type. However, the effects of grassland type on changes in SOC stocks with grassland degradation over broad geographic scales remain unclear. Here, we explored the probably different responses of SOC stocks to grassland degradation for alpine meadows and alpine steppes based on 58 peer‐reviewed publications regarding the Qinghai‐Tibetan Plateau. The results showed that SOC stock consistently decreased with increasing degradation levels in both alpine meadows and steppes, whereas the magnitudes of reduction of SOC stock in alpine meadows were significantly larger than those in alpine steppes ( p < 0.05). The variations in SOC stock were significantly positively correlated with variations in aboveground biomass in the alpine steppes only ( p < 0.05) but were significantly positively correlated with variations in belowground biomass in both alpine meadows and alpine steppes ( p < 0.01). The relationships between change rates of SOC stock with initial SOC stock and mean annual precipitation were both significantly negative during the lightly and moderately degraded stages, while the negative relationship became nonsignificant for the heavily degraded stage ( p > 0.05). These findings suggest that soil organic carbon stock responded more sensitively to degradation in alpine meadows with higher initial SOC stock and annual mean precipitation than in alpine steppes. Our study might have significant implications for future sustainable management practices for carbon sequestration of alpine grasslands on the Qinghai‐Tibetan Plateau.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
无私念瑶完成签到,获得积分10
刚刚
1秒前
沉静缘分发布了新的文献求助10
1秒前
斯文败类应助qq采纳,获得10
2秒前
2秒前
2秒前
Owen应助炒饭采纳,获得10
2秒前
辞忧完成签到,获得积分10
3秒前
shilong.yang完成签到,获得积分10
3秒前
小马甲应助认真的寒香采纳,获得10
3秒前
霖爪飞扬发布了新的文献求助10
3秒前
ZjieY发布了新的文献求助50
3秒前
拼搏尔风完成签到,获得积分10
4秒前
ll完成签到,获得积分10
4秒前
我爱学习发布了新的文献求助10
5秒前
5秒前
幼稚完成签到,获得积分10
6秒前
CipherSage应助zhanghenhao采纳,获得10
6秒前
6秒前
早点睡吧完成签到,获得积分10
6秒前
刚子发布了新的文献求助10
6秒前
小丑鱼儿完成签到 ,获得积分10
6秒前
JJM完成签到,获得积分10
6秒前
7秒前
方子发布了新的文献求助10
7秒前
小葱完成签到,获得积分10
7秒前
7秒前
7秒前
cheng发布了新的文献求助10
7秒前
8秒前
Davin_ji完成签到 ,获得积分10
8秒前
VvV完成签到,获得积分10
8秒前
小蘑菇应助爱啃大虾采纳,获得10
8秒前
张星星完成签到 ,获得积分10
9秒前
lzq完成签到,获得积分10
9秒前
10秒前
svg001发布了新的文献求助10
10秒前
lynn完成签到,获得积分10
11秒前
Jarl完成签到,获得积分10
12秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders 800
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830731
求助须知:如何正确求助?哪些是违规求助? 3373073
关于积分的说明 10477436
捐赠科研通 3093209
什么是DOI,文献DOI怎么找? 1702398
邀请新用户注册赠送积分活动 818982
科研通“疑难数据库(出版商)”最低求助积分说明 771173