A reliable deep-learning-based method for alveolar bone quantification using a murine model of periodontitis and micro-computed tomography imaging

牙周炎 牙槽 结扎 人工智能 骨矿物 医学 深度学习 计算机科学 口腔正畸科 牙科 生物医学工程 病理 骨质疏松症 外科
作者
Ranhui Xi,Mamoon Ali,Yilu Zhou,Marco Tizzano
出处
期刊:Journal of Dentistry [Elsevier BV]
卷期号:146: 105057-105057 被引量:4
标识
DOI:10.1016/j.jdent.2024.105057
摘要

Objectives: This study focuses on artificial intelligence (AI)-assisted analysis of alveolar bone for periodontitis in a mouse model with the aim to create an automatic deep-learning segmentation model that enables researchers to easily examine alveolar bone from micro-computed tomography (µCT) data without needing prior machine learning knowledge. Methods: Ligature-induced experimental periodontitis was produced by placing a small-diameter silk sling ligature around the left maxillary second molar. At 4, 7, 9, or 14 days, the maxillary bone was harvested and processed with a µCT scanner (µCT-45, Scanco). Using Dragonfly (v2021.3), we developed a 3D deep learning model based on the U-Net AI deep learning engine for segmenting materials in complex images to measure alveolar bone volume (BV) and bone mineral density (BMD) while excluding the teeth from the measurements. Results: This model generates 3D segmentation output for a selected region of interest with over 98% accuracy on different formats of µCT data. BV on the ligature side gradually decreased from 0.87 mm3 to 0.50 mm3 on day 9 and then increased to 0.63 mm3 on day 14. The ligature side lost 4.6% of BMD on day 4, 9.6% on day 7, 17.7% on day 9, and 21.1% on day 14. Conclusions: This study developed an AI model that can be downloaded and easily applied, allowing researchers to assess metrics including BV, BMD, and trabecular bone thickness, while excluding teeth from the measurements of mouse alveolar bone. Clinical significance: This work offers an innovative, user-friendly automatic segmentation model that is fast, accurate, and reliable, demonstrating new potential uses of artificial intelligence (AI) in dentistry with great potential in diagnosing, treating, and prognosis of oral diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Aller完成签到,获得积分10
刚刚
xixixi完成签到,获得积分10
刚刚
刚刚
量子星尘发布了新的文献求助50
刚刚
一叶知秋应助seven采纳,获得20
刚刚
JamesPei应助废雨采纳,获得10
1秒前
哈先森完成签到,获得积分10
2秒前
在水一方应助caozhanbo采纳,获得10
2秒前
orixero应助XiYang采纳,获得10
3秒前
回复对方发布了新的文献求助10
3秒前
共享精神应助Kate采纳,获得10
4秒前
5秒前
5秒前
xh发布了新的文献求助10
5秒前
Cole完成签到,获得积分10
6秒前
风趣幻枫完成签到,获得积分10
6秒前
6秒前
田様应助Murphy采纳,获得10
7秒前
浮游应助橘子柚子采纳,获得50
7秒前
韭菜何子完成签到,获得积分10
8秒前
Yy发布了新的文献求助30
9秒前
沉默的觅风完成签到 ,获得积分10
9秒前
游阿游完成签到,获得积分10
9秒前
雾月发布了新的文献求助10
10秒前
科研通AI6应助Yianyan采纳,获得10
10秒前
爱吃鱼的猫猫完成签到,获得积分10
10秒前
10秒前
Sygganggang发布了新的文献求助10
11秒前
洁净的天思完成签到,获得积分10
11秒前
13秒前
13秒前
13秒前
韭菜何子发布了新的文献求助10
13秒前
14秒前
14秒前
科研通AI5应助曾丹么么哒采纳,获得10
14秒前
shu完成签到,获得积分10
15秒前
wz完成签到 ,获得积分10
15秒前
Levieus应助阿巴阿巴茶采纳,获得10
17秒前
与我常在完成签到,获得积分20
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5074163
求助须知:如何正确求助?哪些是违规求助? 4294315
关于积分的说明 13380837
捐赠科研通 4115699
什么是DOI,文献DOI怎么找? 2253823
邀请新用户注册赠送积分活动 1258466
关于科研通互助平台的介绍 1191322