The Tetragonal‐Monoclinic Transformation in Zirconia: Lessons Learned and Future Trends

立方氧化锆 材料科学 四方晶系 单斜晶系 断裂韧性 陶瓷 复合材料 离子电导率 相(物质) 韧性 矿物学 晶体结构 结晶学 化学 物理化学 电极 有机化学 电解质
作者
Jérôme Chevalier,Laurent Grémillard,Anil V. Virkar,David R. Clarke
出处
期刊:Journal of the American Ceramic Society [Wiley]
卷期号:92 (9): 1901-1920 被引量:1133
标识
DOI:10.1111/j.1551-2916.2009.03278.x
摘要

Zirconia ceramics have found broad applications in a variety of energy and biomedical applications because of their unusual combination of strength, fracture toughness, ionic conductivity, and low thermal conductivity. These attractive characteristics are largely associated with the stabilization of the tetragonal and cubic phases through alloying with aliovalent ions. The large concentration of vacancies introduced to charge compensate of the aliovalent alloying is responsible for both the exceptionally high ionic conductivity and the unusually low, and temperature independent, thermal conductivity. The high fracture toughness exhibited by many of zirconia ceramics is attributed to the constraint of the tetragonal‐to‐monoclinic phase transformation and its release during crack propagation. In other zirconia ceramics containing the tetragonal phase, the high fracture toughness is associated with ferroelastic domain switching. However, many of these attractive features of zirconia, especially fracture toughness and strength, are compromised after prolonged exposure to water vapor at intermediate temperatures (∼30°–300°C) in a process referred to as low‐temperature degradation (LTD), and initially identified over two decades ago. This is particularly so for zirconia in biomedical applications, such as hip implants and dental restorations. Less well substantiated is the possibility that the same process can also occur in zirconia used in other applications, for instance, zirconia thermal barrier coatings after long exposure at high temperature. Based on experience with the failure of zirconia femoral heads, as well as studies of LTD, it is shown that many of the problems of LTD can be mitigated by the appropriate choice of alloying and/or process control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小白一枚完成签到,获得积分20
刚刚
郭志强完成签到,获得积分10
1秒前
丘比特应助jackiewang采纳,获得10
2秒前
拽小拽发布了新的文献求助10
2秒前
明杰发布了新的文献求助10
2秒前
小熊发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
6秒前
6秒前
LGH发布了新的文献求助200
6秒前
7秒前
明杰完成签到,获得积分20
7秒前
抹缇卡完成签到 ,获得积分10
8秒前
香蕉觅云应助孙梁子采纳,获得10
8秒前
那些年发布了新的文献求助10
9秒前
蛋蛋姐姐完成签到,获得积分10
9秒前
赘婿应助满意采纳,获得10
10秒前
lllllxy完成签到,获得积分10
10秒前
酸化土壤改良应助困敦采纳,获得10
10秒前
qin发布了新的文献求助10
10秒前
诸葛天完成签到 ,获得积分10
10秒前
甜甜玫瑰应助夜守采纳,获得10
10秒前
拽小拽完成签到,获得积分10
10秒前
10秒前
莫里完成签到,获得积分10
11秒前
Lu发布了新的文献求助10
11秒前
眯眯眼的海完成签到,获得积分10
12秒前
777777完成签到,获得积分10
12秒前
hahais250完成签到 ,获得积分10
13秒前
无忧0913完成签到 ,获得积分10
13秒前
墨墨叻完成签到,获得积分10
13秒前
冷艳从霜完成签到,获得积分10
13秒前
KingYugene完成签到,获得积分10
14秒前
想不出昵称完成签到,获得积分10
14秒前
乐乐应助那些年采纳,获得10
14秒前
小熊完成签到,获得积分20
15秒前
牛诗悦完成签到,获得积分10
15秒前
梅赛德斯奔驰完成签到,获得积分10
16秒前
高分求助中
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
Yuwu Song, Biographical Dictionary of the People's Republic of China 700
[Lambert-Eaton syndrome without calcium channel autoantibodies] 520
The three stars each: the Astrolabes and related texts 500
Revolutions 400
Diffusion in Solids: Key Topics in Materials Science and Engineering 400
Phase Diagrams: Key Topics in Materials Science and Engineering 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2451669
求助须知:如何正确求助?哪些是违规求助? 2124628
关于积分的说明 5406853
捐赠科研通 1853364
什么是DOI,文献DOI怎么找? 921776
版权声明 562273
科研通“疑难数据库(出版商)”最低求助积分说明 493078