The challenges of using NAD+-dependent formate dehydrogenases for CO2conversion

甲酸脱氢酶 生化工程 NAD+激酶 格式化 化学 辅因子 甲酸 人工光合作用 组合化学 催化作用 计算机科学 有机化学 光催化 工程类
作者
Saadet Alpdağtaş,Ossi Turunen,Jarkko Valjakka,Barış Bi̇nay
出处
期刊:Critical Reviews in Biotechnology [Informa]
卷期号:42 (6): 953-972 被引量:21
标识
DOI:10.1080/07388551.2021.1981820
摘要

In recent years, CO2 reduction and utilization have been proposed as an innovative solution for global warming and the ever-growing energy and raw material demands. In contrast to various classical methods, including chemical, electrochemical, and photochemical methods, enzymatic methods offer a green and sustainable option for CO2 conversion. In addition, enzymatic hydrogenation of CO2 into platform chemicals could be used to produce economically useful hydrogen storage materials, making it a win-win strategy. The thermodynamic and kinetic stability of the CO2 molecule makes its utilization a challenging task. However, Nicotine adenine dinucleotide (NAD+)-dependent formate dehydrogenases (FDHs), which have high selectivity and specificity, are attractive catalysts to overcome this issue and convert CO2 into fuels and renewable chemicals. It is necessary to improve the stability, cofactor necessity, and CO2 conversion efficiency of these enzymes, such as by combining them with appropriate hybrid systems. However, metal-independent, NAD+-dependent FDHs, and their CO2 reduction activity have received limited attention to date. This review outlines the CO2 reduction ability of these enzymes as well as their properties, reaction mechanisms, immobilization strategies, and integration with electrochemical and photochemical systems for the production of formic acid or formate. The biotechnological applications of FDH, future perspectives, barriers to CO2 reduction with FDH, and aspects that must be further developed are briefly summarized. We propose that constructing hybrid systems that include NAD+-dependent FDHs is a promising approach to convert CO2 and strengthen the sustainable carbon bio-economy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Joaquin完成签到,获得积分10
3秒前
5秒前
活泼文涛关注了科研通微信公众号
5秒前
jjjjjj发布了新的文献求助10
5秒前
CipherSage应助Lianggo采纳,获得10
6秒前
开心的凡梦完成签到,获得积分20
8秒前
hjx发布了新的文献求助10
10秒前
太阳发布了新的文献求助10
11秒前
彭于晏应助黙宇循光采纳,获得10
13秒前
今后应助黙宇循光采纳,获得10
13秒前
NexusExplorer应助黙宇循光采纳,获得10
13秒前
优美怜晴关注了科研通微信公众号
14秒前
丰富翠彤发布了新的文献求助10
16秒前
16秒前
16秒前
17秒前
jjjjjj完成签到,获得积分10
17秒前
wangjingli666应助太阳采纳,获得10
19秒前
20秒前
冷静的小虾米完成签到,获得积分10
20秒前
21秒前
21秒前
zero1901发布了新的文献求助10
22秒前
木南发布了新的文献求助10
22秒前
22秒前
ezio完成签到 ,获得积分10
22秒前
都给我求虚功完成签到,获得积分10
23秒前
咩咩发布了新的文献求助10
24秒前
25秒前
Lianggo发布了新的文献求助10
26秒前
28秒前
29秒前
xiaotianli完成签到,获得积分10
30秒前
Orange应助luo采纳,获得10
31秒前
斯文的从彤完成签到,获得积分20
31秒前
咩咩完成签到,获得积分10
31秒前
benben应助zz采纳,获得10
32秒前
优美怜晴发布了新的文献求助10
32秒前
Vroom发布了新的文献求助10
33秒前
高分求助中
The three stars each : the Astrolabes and related texts 1070
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
De arte gymnastica. The art of gymnastics 600
少脉山油柑叶的化学成分研究 530
Sport in der Antike Hardcover – March 1, 2015 500
Boris Pesce - Gli impiegati della Fiat dal 1955 al 1999 un percorso nella memoria 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2404851
求助须知:如何正确求助?哪些是违规求助? 2103308
关于积分的说明 5308164
捐赠科研通 1830745
什么是DOI,文献DOI怎么找? 912219
版权声明 560529
科研通“疑难数据库(出版商)”最低求助积分说明 487712