Building energy consumption prediction for residential buildings using deep learning and other machine learning techniques

能源消耗 支持向量机 人工神经网络 人工智能 决策树 计算机科学 随机森林 机器学习 能量建模 深度学习 梯度升压 能量(信号处理) 工程类 数学 统计 电气工程
作者
Razak Olu-Ajayi,Hafiz Alaka,Ismail Sulaimon,Funlade Sunmola,Saheed Ajayi
出处
期刊:Journal of building engineering [Elsevier BV]
卷期号:45: 103406-103406 被引量:335
标识
DOI:10.1016/j.jobe.2021.103406
摘要

The high proportion of energy consumed in buildings has engendered the manifestation of many environmental problems which deploy adverse impacts on the existence of mankind. The prediction of building energy use is essentially proclaimed to be a method for energy conservation and improved decision-making towards decreasing energy usage. Also, the construction of energy efficient buildings will aid the reduction of total energy consumed in newly constructed buildings. Machine Learning (ML) method is recognised as the best suited approach for producing desired outcomes in prediction task. Hence, in several studies, ML has been applied in the field of energy consumption of operational building. However, there are not many studies investigating the suitability of ML methods for forecasting the potential building energy consumption at the early design phase to reduce the construction of more energy inefficient buildings. To address this gap, this paper presents the utilization of several machine learning techniques namely Artificial Neural Network (ANN), Gradient Boosting (GB), Deep Neural Network (DNN), Random Forest (RF), Stacking, K Nearest Neighbour (KNN), Support Vector Machine (SVM), Decision tree (DT) and Linear Regression (LR) for predicting annual building energy consumption using a large dataset of residential buildings. This study also examines the effect of the building clusters on the model performance. The novelty of this paper is to develop a model that enables designers input key features of a building design and forecast the annual average energy consumption at the early stages of development. This result reveals DNN as the most efficient predictive model for energy use at the early design phase and this presents a motivation for building designers to utilize it before construction to make informed decision, manage and optimize design. • The development of an efficient energy predictive model for design stage of building. • Application of feature selection to identify the most relevant variables for annual energy prediction. • Deep learning, ensemble and other machine learning models were developed for predicting annual energy consumption. • The effect of data size on model performance was investigated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hofury完成签到 ,获得积分10
3秒前
xiaoya完成签到 ,获得积分10
5秒前
11秒前
王明新完成签到,获得积分10
12秒前
胡茶茶完成签到 ,获得积分10
16秒前
闪闪雅阳发布了新的文献求助10
18秒前
小龙完成签到,获得积分10
19秒前
20秒前
称心的鑫发布了新的文献求助10
26秒前
sddq完成签到,获得积分10
27秒前
Zp完成签到,获得积分10
28秒前
songjin111111完成签到,获得积分10
30秒前
科研狗完成签到 ,获得积分0
32秒前
dent强完成签到,获得积分10
32秒前
QQ完成签到 ,获得积分10
34秒前
wqts完成签到,获得积分10
37秒前
Arthur完成签到 ,获得积分10
37秒前
繁荣的凝荷完成签到 ,获得积分10
41秒前
j1kxm完成签到,获得积分10
46秒前
顾矜应助科研通管家采纳,获得10
57秒前
libiqing77完成签到,获得积分10
1分钟前
花阳年华完成签到 ,获得积分10
1分钟前
西溪完成签到,获得积分10
1分钟前
1分钟前
舒适乐安发布了新的文献求助10
1分钟前
煮饭吃Zz完成签到 ,获得积分10
1分钟前
车剑锋完成签到,获得积分10
1分钟前
1分钟前
banbieshenlu完成签到,获得积分10
1分钟前
1分钟前
lhnsisi发布了新的文献求助10
1分钟前
稳重完成签到 ,获得积分10
1分钟前
小菡菡发布了新的文献求助10
1分钟前
ooa4321完成签到,获得积分10
1分钟前
溜溜很优秀完成签到,获得积分10
1分钟前
zeannezg完成签到 ,获得积分10
1分钟前
七七完成签到 ,获得积分10
1分钟前
舒适乐安完成签到,获得积分10
1分钟前
逝水完成签到 ,获得积分10
1分钟前
momo发布了新的文献求助30
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779247
求助须知:如何正确求助?哪些是违规求助? 3324813
关于积分的说明 10220049
捐赠科研通 3039964
什么是DOI,文献DOI怎么找? 1668526
邀请新用户注册赠送积分活动 798717
科研通“疑难数据库(出版商)”最低求助积分说明 758503