Expanding functional protein sequence spaces using generative adversarial networks

对抗制 计算生物学 生成语法 人工智能 生物 序列(生物学) 业务 计算机科学 遗传学
作者
Donatas Repecka,Vykintas Jauniškis,Laurynas Karpus,Elzbieta Rembeza,Irmantas Rokaitis,Jan Zrimec,Simona Povilonienė,Audrius Laurynėnas,Sandra Viknander,Wissam Abuajwa,Otto Savolainen,Rolandas Meškys,Martin K. M. Engqvist,Aleksej Zelezniak
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:3 (4): 324-333 被引量:278
标识
DOI:10.1038/s42256-021-00310-5
摘要

De novo protein design for catalysis of any desired chemical reaction is a long-standing goal in protein engineering because of the broad spectrum of technological, scientific and medical applications. However, mapping protein sequence to protein function is currently neither computationally nor experimentally tangible. Here, we develop ProteinGAN, a self-attention-based variant of the generative adversarial network that is able to ‘learn’ natural protein sequence diversity and enables the generation of functional protein sequences. ProteinGAN learns the evolutionary relationships of protein sequences directly from the complex multidimensional amino-acid sequence space and creates new, highly diverse sequence variants with natural-like physical properties. Using malate dehydrogenase (MDH) as a template enzyme, we show that 24% (13 out of 55 tested) of the ProteinGAN-generated and experimentally tested sequences are soluble and display MDH catalytic activity in the tested conditions in vitro, including a highly mutated variant of 106 amino-acid substitutions. ProteinGAN therefore demonstrates the potential of artificial intelligence to rapidly generate highly diverse functional proteins within the allowed biological constraints of the sequence space. A protein’s three-dimensional structure and properties are defined by its amino-acid sequence, but mapping protein sequence to protein function is a computationally highly intensive task. A new generative adversarial network approach learns from natural protein sequences and generates new, diverse protein sequence variations, which are experimentally tested.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小核桃仁完成签到,获得积分10
刚刚
研友_VZG7GZ应助duduguai采纳,获得10
刚刚
多云转晴发布了新的文献求助10
刚刚
1秒前
失眠醉易应助张继科keke采纳,获得20
2秒前
2秒前
2秒前
zhendema完成签到,获得积分10
2秒前
3秒前
夏天发布了新的文献求助10
4秒前
李健的小迷弟应助xyh采纳,获得10
4秒前
Vlory完成签到 ,获得积分10
4秒前
赘婿应助zwz1015采纳,获得10
4秒前
Ankangg完成签到,获得积分10
5秒前
5秒前
LMM发布了新的文献求助10
5秒前
小晓完成签到,获得积分10
6秒前
ZhouYW应助6666采纳,获得10
6秒前
外向的慕灵完成签到,获得积分20
6秒前
Amai发布了新的文献求助10
6秒前
帅帅气气关注了科研通微信公众号
6秒前
寂寞的白凡完成签到,获得积分10
7秒前
7秒前
pck1212123发布了新的文献求助10
7秒前
ella333完成签到,获得积分10
7秒前
7秒前
Suta完成签到,获得积分10
8秒前
8秒前
9秒前
Akim应助天天开心采纳,获得10
9秒前
大意的安白发布了新的文献求助100
9秒前
qiaozhi乔治发布了新的文献求助10
9秒前
9秒前
9秒前
ding应助甜品采纳,获得10
10秒前
小星星完成签到 ,获得积分10
10秒前
10秒前
一颗馒头完成签到,获得积分10
10秒前
10秒前
科研通AI2S应助drhh采纳,获得10
11秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790460
求助须知:如何正确求助?哪些是违规求助? 3335150
关于积分的说明 10273529
捐赠科研通 3051578
什么是DOI,文献DOI怎么找? 1674737
邀请新用户注册赠送积分活动 802803
科研通“疑难数据库(出版商)”最低求助积分说明 760907