Current and future deep learning algorithms for tandem mass spectrometry (MS/MS)‐based small molecule structure elucidation

化学 串联质谱法 化学信息学 下部结构 预处理器 计算机科学 人工智能 质谱法 串联 算法 模式识别(心理学) 计算化学 工程类 复合材料 结构工程 色谱法 材料科学
作者
Youzhong Liu,Thomas De Vijlder,Wout Bittremieux,Kris Laukens,Wouter Heyndrickx
出处
期刊:Rapid Communications in Mass Spectrometry [Wiley]
被引量:27
标识
DOI:10.1002/rcm.9120
摘要

Rationale Structure elucidation of small molecules has been one of the cornerstone applications of mass spectrometry for decades. Despite the increasing availability of software tools, structure elucidation from tandem mass spectrometry (MS/MS) data remains a challenging task, leaving many spectra unidentified. However, as an increasing number of reference MS/MS spectra are being curated at a repository scale and shared on public servers, there is an exciting opportunity to develop powerful new deep learning (DL) models for automated structure elucidation. Architectures Recent early‐stage DL frameworks mostly follow a “two‐step approach” that translates MS/MS spectra to database structures after first predicting molecular descriptors. The related architectures could suffer from: (1) computational complexity because of the separate training of descriptor‐specific classifiers, (2) the high dimensional nature of mass spectral data and information loss due to data preprocessing, (3) low substructure coverage and class imbalance problem of predefined molecular fingerprints. Inspired by successful DL frameworks employed in drug discovery fields, we have conceptualized and designed hypothetical DL architectures to tackle the above issues. For (1), we recommend multitask learning to achieve better performance with fewer classifiers by grouping structurally related descriptors. For (2) and (3), we introduce feature engineering to extract condensed and higher‐order information from spectra and structure data. For instance, encoding spectra with subtrees and pre‐calculated spectral patterns add peak interactions to the model input. Encoding structures with graph convolutional networks incorporates connectivity within a molecule. The joint embedding of spectra and structures can enable simultaneous spectral library and molecular database search. Conclusions In principle, given enough training data, adapted DL architectures, optimal hyperparameters and computing power, DL frameworks can predict small molecule structures, completely or at least partially, from MS/MS spectra. However, their performance and general applicability should be fairly evaluated against classical machine learning frameworks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17876581310发布了新的文献求助10
刚刚
1秒前
1秒前
诸松完成签到,获得积分10
1秒前
xx发布了新的文献求助10
1秒前
1秒前
MarsDreamer完成签到,获得积分20
2秒前
ceeray23应助李栋梁采纳,获得10
2秒前
万能图书馆应助陈陈陈采纳,获得10
2秒前
栀蓝发布了新的文献求助10
2秒前
4秒前
cdercder应助夫子1987采纳,获得10
5秒前
cdercder应助夫子1987采纳,获得10
5秒前
jiahe发布了新的文献求助30
5秒前
cdercder应助夫子1987采纳,获得10
5秒前
cdercder应助夫子1987采纳,获得10
5秒前
5秒前
大力高山完成签到,获得积分10
5秒前
liumenghan发布了新的文献求助10
6秒前
ho应助自由南珍采纳,获得10
6秒前
6秒前
Silvia完成签到,获得积分10
6秒前
尊敬梦旋完成签到,获得积分10
6秒前
7秒前
张XX完成签到,获得积分10
7秒前
darling完成签到,获得积分10
7秒前
7秒前
领导范儿应助123采纳,获得10
8秒前
8秒前
斯文败类应助LIN采纳,获得10
8秒前
WN发布了新的文献求助10
8秒前
88完成签到,获得积分10
9秒前
小秦驳回了斧王应助
9秒前
天天快乐应助mk_smile采纳,获得10
9秒前
小新应助七分饱采纳,获得10
10秒前
才能回答不出完成签到,获得积分10
10秒前
星辰大海应助标致逍遥采纳,获得10
10秒前
11秒前
徐啊徐发布了新的文献求助10
11秒前
Betaremains完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402945
求助须知:如何正确求助?哪些是违规求助? 4521448
关于积分的说明 14085598
捐赠科研通 4435393
什么是DOI,文献DOI怎么找? 2434675
邀请新用户注册赠送积分活动 1426840
关于科研通互助平台的介绍 1405544