Cell‐based hybrid adaptive mesh refinement algorithm for immersed boundary method

自适应网格优化 网格 算法 解算器 模板 计算机科学 计算科学 多边形网格 浸入边界法 流量(数学) 边界(拓扑) 并行计算 数学优化 数学 几何学 计算机图形学(图像) 数学分析
作者
Vignesh Saravanan,Hanahchim Choung,Soogab Lee
出处
期刊:International Journal for Numerical Methods in Fluids [Wiley]
卷期号:94 (3): 272-294 被引量:6
标识
DOI:10.1002/fld.5054
摘要

Abstract This article proposes a hybrid adaptive mesh refinement (AMR) algorithm for the immersed boundary method (IBM) combination, and the AMR code is split into mesh and physics codes to optimize each part individually. The uniform parent grid solver is used for AMR grids by constructing hanging cells for the high‐order extension. The restrictive spatial refinement in a fully threaded tree (FTT) data structure is explored, and a simplified stencil search algorithm for hanging cells construction is introduced, including current and following child AMR level cells, if any. The proposed AMR method was applied to IBM, which offers flexibility in treating complex geometries in the Cartesian grid, leading to algorithmic simplicity and computational efficiency. Local near immersed boundary refinement is proposed to avoid complex and computationally expensive IBM and AMR algorithms near the solid bodies. Finally, a high‐order flux scheme extension at AMR level transition cells and the proposed method's applicability for steady and transient flows are demonstrated. Besides state and flux variables storage, the proposed hybrid AMR method's additional cost is 4.5 words/cell instead of 3.5 words/cell for 2D and 3.75 words/cell instead of 2.75 words/cell for 3D compared to the conventional FTT‐based AMR method. By comparing the uniform grid, the AMR final grid distribution shows that the optimal cell distribution based on flow physics reduces the cells required by more than 40% to resolve the complex flow features in less computational time. The enhanced performance and accuracy of the proposed AMR method in resolving different scale flow features are validated through benchmark problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
你在说什么完成签到,获得积分10
刚刚
神奇宝贝发布了新的文献求助10
刚刚
1秒前
农艳宁发布了新的文献求助10
1秒前
1秒前
你的名字发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
结实的凝天完成签到,获得积分10
2秒前
3秒前
3秒前
玩转非晶完成签到,获得积分10
3秒前
科研通AI2S应助一年5篇采纳,获得10
3秒前
3秒前
Sunny发布了新的文献求助10
4秒前
4秒前
kk完成签到,获得积分10
4秒前
希望天下0贩的0应助ying采纳,获得10
4秒前
4秒前
何双发布了新的文献求助10
5秒前
太阳啊发布了新的文献求助10
5秒前
5秒前
panzhongjie发布了新的文献求助10
5秒前
隐形曼青应助chenchen97422采纳,获得10
5秒前
6秒前
小羊啊发布了新的文献求助10
7秒前
8秒前
9秒前
jane发布了新的文献求助10
9秒前
Frank发布了新的文献求助10
9秒前
荔之sunshine关注了科研通微信公众号
9秒前
JM发布了新的文献求助10
10秒前
zlt完成签到,获得积分10
10秒前
11秒前
11秒前
太阳啊完成签到,获得积分10
11秒前
11秒前
鹿衔完成签到,获得积分10
12秒前
13秒前
英俊的铭应助小小采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776692
求助须知:如何正确求助?哪些是违规求助? 5630245
关于积分的说明 15443636
捐赠科研通 4908741
什么是DOI,文献DOI怎么找? 2641390
邀请新用户注册赠送积分活动 1589383
关于科研通互助平台的介绍 1543956