Rapid Extraction of the Spatial Distribution of Physical Saliency and Semantic Informativeness from Natural Scenes in the Human Brain

萃取(化学) 自然(考古学) 人工智能 人脑 计算机科学 分布(数学) 模式识别(心理学) 空间分布 心理学 自然语言处理 地理 神经科学 遥感 化学 数学 色谱法 考古 数学分析
作者
John E. Kiat,Taylor R. Hayes,John M. Henderson,Steven J. Luck
出处
期刊:The Journal of Neuroscience [Society for Neuroscience]
卷期号:42 (1): 97-108 被引量:27
标识
DOI:10.1523/jneurosci.0602-21.2021
摘要

Physically salient objects are thought to attract attention in natural scenes. However, research has shown that meaning maps, which capture the spatial distribution of semantically informative scene features, trump physical saliency in predicting the pattern of eye moments in natural scene viewing. Meaning maps even predict the fastest eye movements, suggesting that the brain extracts the spatial distribution of potentially meaningful scene regions very rapidly. To test this hypothesis, we applied representational similarity analysis to ERP data. The ERPs were obtained from human participants ( N = 32, male and female) who viewed a series of 50 different natural scenes while performing a modified 1-back task. For each scene, we obtained a physical saliency map from a computational model and a meaning map from crowd-sourced ratings. We then used representational similarity analysis to assess the extent to which the representational geometry of physical saliency maps and meaning maps can predict the representational geometry of the neural response (the ERP scalp distribution) at each moment in time following scene onset. We found that a link between physical saliency and the ERPs emerged first (∼78 ms after stimulus onset), with a link to semantic informativeness emerging soon afterward (∼87 ms after stimulus onset). These findings are in line with previous evidence indicating that saliency is computed rapidly, while also indicating that information related to the spatial distribution of semantically informative scene elements is computed shortly thereafter, early enough to potentially exert an influence on eye movements. SIGNIFICANCE STATEMENT Attention may be attracted by physically salient objects, such as flashing lights, but humans must also be able to direct their attention to meaningful parts of scenes. Understanding how we direct attention to meaningful scene regions will be important for developing treatments for disorders of attention and for designing roadways, cockpits, and computer user interfaces. Information about saliency appears to be extracted rapidly by the brain, but little is known about the mechanisms that determine the locations of meaningful information. To address this gap, we showed people photographs of real-world scenes and measured brain activity. We found that information related to the locations of meaningful scene elements was extracted rapidly, shortly after the emergence of saliency-related information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
joshiii发布了新的文献求助10
2秒前
Jiangpeng完成签到,获得积分10
2秒前
2秒前
嘿嘿发布了新的文献求助10
3秒前
orixero应助XH采纳,获得10
3秒前
自然的岱周完成签到,获得积分10
3秒前
曼曼完成签到,获得积分10
3秒前
兔子发布了新的文献求助10
4秒前
Arcencie完成签到,获得积分10
5秒前
gngxnh完成签到 ,获得积分10
7秒前
幽默的太阳完成签到 ,获得积分10
7秒前
仙人掌完成签到 ,获得积分20
7秒前
Friday完成签到,获得积分10
10秒前
安评特种兵完成签到,获得积分10
10秒前
特独斩完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
12秒前
12秒前
自一完成签到 ,获得积分10
13秒前
Zoe完成签到 ,获得积分10
14秒前
小泰勒横着走完成签到,获得积分10
14秒前
轻松翠丝发布了新的文献求助30
14秒前
abcdulla777完成签到,获得积分20
14秒前
15秒前
16秒前
小马甲应助Alora采纳,获得10
16秒前
大力衫发布了新的文献求助10
16秒前
17秒前
17秒前
18秒前
18秒前
18秒前
wwhh完成签到 ,获得积分10
18秒前
19秒前
玄笺发布了新的文献求助10
19秒前
nikonikoni发布了新的文献求助10
19秒前
油柑美式发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5296872
求助须知:如何正确求助?哪些是违规求助? 4445936
关于积分的说明 13837692
捐赠科研通 4330953
什么是DOI,文献DOI怎么找? 2377367
邀请新用户注册赠送积分活动 1372651
关于科研通互助平台的介绍 1338148