Prediction of aircraft estimated time of arrival using machine learning methods

人工神经网络 计算机科学 人工智能 机器学习 跑道 原始数据 弹道 序列(生物学) 随机森林 数据挖掘 空中交通管制 工程类 历史 天文 程序设计语言 考古 生物 航空航天工程 遗传学 物理
作者
O. Basturk,Cem Çetek
出处
期刊:Journal of the Royal Aeronautical Society [Cambridge University Press]
卷期号:125 (1289): 1245-1259 被引量:28
标识
DOI:10.1017/aer.2021.13
摘要

ABSTRACT In this study, prediction of aircraft Estimated Time of Arrival (ETA) is proposed using machine learning algorithms. Accurate prediction of ETA is important for management of delay and air traffic flow, runway assignment, gate assignment, collaborative decision making (CDM), coordination of ground personnel and equipment, and optimisation of arrival sequence etc. Machine learning is able to learn from experience and make predictions with weak assumptions or no assumptions at all. In the proposed approach, general flight information, trajectory data and weather data were obtained from different sources in various formats. Raw data were converted to tidy data and inserted into a relational database. To obtain the features for training the machine learning models, the data were explored, cleaned and transformed into convenient features. New features were also derived from the available data. Random forests and deep neural networks were used to train the machine learning models. Both models can predict the ETA with a mean absolute error (MAE) less than 6min after departure, and less than 3min after terminal manoeuvring area (TMA) entrance. Additionally, a web application was developed to dynamically predict the ETA using proposed models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuanmeng434完成签到,获得积分10
刚刚
刚刚
langbuyu完成签到,获得积分10
1秒前
1233完成签到 ,获得积分10
1秒前
Fa完成签到,获得积分10
1秒前
Denmark发布了新的文献求助10
2秒前
2秒前
丙子哥完成签到,获得积分10
2秒前
fff完成签到,获得积分10
2秒前
充电宝应助勤劳冰烟采纳,获得10
2秒前
WANDour完成签到,获得积分10
2秒前
希望天下0贩的0应助耶耶采纳,获得10
2秒前
皮皮虾完成签到 ,获得积分10
3秒前
慕青应助anny2022采纳,获得10
4秒前
Wmhuahuaood发布了新的文献求助10
4秒前
橙子完成签到,获得积分10
4秒前
zhao发布了新的文献求助10
4秒前
Howes91发布了新的文献求助10
5秒前
酷波er应助mof采纳,获得10
5秒前
6秒前
思源应助ghost采纳,获得10
6秒前
jignjing完成签到,获得积分10
6秒前
6秒前
Jiayou Zhang完成签到,获得积分10
6秒前
LinYX完成签到,获得积分10
6秒前
修炼哥完成签到,获得积分10
6秒前
7秒前
科研小虫完成签到,获得积分10
7秒前
7秒前
粥粥完成签到,获得积分0
7秒前
Atan完成签到,获得积分10
7秒前
旸羽完成签到,获得积分10
7秒前
zqingqing完成签到,获得积分10
7秒前
121完成签到,获得积分10
8秒前
hym完成签到,获得积分10
8秒前
西米露完成签到,获得积分10
8秒前
澳大利亚完成签到,获得积分10
9秒前
端庄的小蝴蝶完成签到,获得积分10
9秒前
10秒前
10秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Oxford Learner's Pocket Word Skills 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5151003
求助须知:如何正确求助?哪些是违规求助? 4346822
关于积分的说明 13534586
捐赠科研通 4189537
什么是DOI,文献DOI怎么找? 2297538
邀请新用户注册赠送积分活动 1297888
关于科研通互助平台的介绍 1242494