A deep learning-based system for assessment of serum quality using sample images

溶血 人工智能 深度学习 机器学习 图像质量 计算机科学 医学 内科学 图像(数学)
作者
Chao Yang,Dongling Li,Dehua Sun,Shaofen Zhang,Peng Zhang,Yufeng Xiong,Minghai Zhao,Qi Tao,Bo Situ,Lei Zheng
出处
期刊:Clinica Chimica Acta [Elsevier BV]
卷期号:531: 254-260 被引量:11
标识
DOI:10.1016/j.cca.2022.04.010
摘要

Serum quality is an important factor in the pre-analytical phase of laboratory analysis. Visual inspection of serum quality (including recognition of hemolysis, icterus, and lipemia) is widely used in clinical laboratories but is time-consuming, subjective, and prone to errors.Deep learning models were trained using a dataset of 16,427 centrifuged blood images with known serum indices values (including hemolytic index, icteric index, and lipemic index) and their performance was evaluated by five-fold cross-validation. Models were developed for recognizing qualified, unqualified and image-interfered samples, predicting serum indices values, and finally composed into a deep learning-based system for the automatic assessment of serum quality.The area under the receiver operating characteristic curve (AUC) of the developed model for recognizing qualified, unqualified and image-interfered samples was 0.987, 0.983, and 0.999 respectively. As for subclassification of hemolysis, icterus, and lipemia, the AUCs were 0.989, 0.996, and 0.993. For serum indices and total bilirubin predictions, the Pearson's correlation coefficients (PCCs) of the developed model were 0.840, 0.963, 0.854, and 0.953 respectively. Moreover, 30.8% of serum indices tests were deemed unnecessary due to the preliminary application of the deep learning-based system.The deep learning-based system is suitable for the assessment of serum quality and holds the potential to be used as an accurate, efficient, and rarely interfered solution in clinical laboratories.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助houfei采纳,获得10
刚刚
丘比特应助123采纳,获得10
刚刚
辞轲完成签到,获得积分10
1秒前
SXYYXS发布了新的文献求助10
1秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
核桃应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得30
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
3秒前
核桃应助科研通管家采纳,获得30
3秒前
3秒前
等待冬亦应助科研通管家采纳,获得20
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
116完成签到,获得积分20
4秒前
5秒前
长至发布了新的文献求助10
6秒前
6秒前
8秒前
8秒前
8秒前
称心八宝粥完成签到,获得积分10
10秒前
11秒前
Grace159完成签到 ,获得积分10
12秒前
才露尖尖角完成签到,获得积分10
12秒前
许可发布了新的文献求助10
12秒前
完美世界应助长至采纳,获得10
13秒前
日月崇光应助鱼里采纳,获得30
13秒前
小蘑菇应助多多采纳,获得10
13秒前
14秒前
guositing完成签到,获得积分10
14秒前
淼淼1发布了新的文献求助10
15秒前
耶斯发布了新的文献求助30
16秒前
春天完成签到 ,获得积分10
16秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842525
求助须知:如何正确求助?哪些是违规求助? 3384644
关于积分的说明 10536237
捐赠科研通 3105132
什么是DOI,文献DOI怎么找? 1710053
邀请新用户注册赠送积分活动 823486
科研通“疑难数据库(出版商)”最低求助积分说明 774091