Forecasting the occurrence of extreme electricity prices using a multivariate logistic regression model

逻辑回归 多元统计 计量经济学 电力市场 计算机科学 统计 经济 工程类 数学 电气工程
作者
Luyao Liu,Feifei Bai,Chenyu Su,Cuiping Ma,Ruifeng Yan,Hailong Li,Qie Sun,Ronald Wennersten
出处
期刊:Energy [Elsevier BV]
卷期号:247: 123417-123417 被引量:26
标识
DOI:10.1016/j.energy.2022.123417
摘要

Extreme electricity prices occur with a higher frequency and a larger magnitude in recent years. Accurate forecasting of the occurrence of extreme prices is of great concern to market operators and participants. This paper aims to forecast the occurrence probability of day-ahead extremely low and high electricity prices and investigate the relative importance of different influencing variables. The data obtained from the Australian National Electricity Market (NEM) were employed, including historical prices (one day before and one week before), reserve capacity, load demand, variable renewable energy (VRE) proportion and interconnector flow. A Multivariate Logistic Regression (MLgR) model was proposed, which showed good forecasting capability in terms of model fitness and classification accuracy with different thresholds of extreme prices. In addition, the performance of the MLgR model was verified by comparing with two other models, i.e., Multi-Layer Perceptron (MLP) and Radical Basis Function (RBF) neural network. Relative importance analysis was performed to quantify of the contribution of the variables. The proposed method enriches the theories of electricity price forecast and advances the understanding of the dynamics of extreme prices. By applying the model in practice, it will contribute to promoting the management of operation and establishment of a robust energy market. • The occurrence of extremely low and high electricity prices was forecasted. • A multivariate logistic regression (MLgR) model was proposed to perform the forecast. • Model fitness and classification accuracy of the model were evaluated. • The accuracy of MLgR model was verified by comparing with two neural networks. • Relative importance of various variables on extreme prices was quantified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文献完成签到 ,获得积分10
2秒前
华理附院孙文博完成签到 ,获得积分10
4秒前
hanhan发布了新的文献求助10
4秒前
niu完成签到,获得积分10
5秒前
震动的修洁完成签到 ,获得积分10
6秒前
叮叮当完成签到,获得积分10
6秒前
QIN完成签到 ,获得积分10
7秒前
mamm发布了新的文献求助10
9秒前
古古怪界丶黑大帅完成签到,获得积分10
10秒前
12秒前
15秒前
15秒前
莫问今生完成签到,获得积分10
16秒前
苏桑焉完成签到 ,获得积分10
16秒前
17秒前
17秒前
小宋给小宋的求助进行了留言
18秒前
19秒前
小雪糕发布了新的文献求助30
19秒前
hanhan完成签到 ,获得积分10
20秒前
sarah发布了新的文献求助10
21秒前
22秒前
22秒前
赞zan发布了新的文献求助10
23秒前
28秒前
加油加油冲冲冲完成签到,获得积分10
30秒前
赞zan完成签到,获得积分10
30秒前
huxuehong完成签到,获得积分10
30秒前
寒冬完成签到,获得积分10
31秒前
fx完成签到,获得积分10
31秒前
mm发布了新的文献求助10
31秒前
栖木木完成签到 ,获得积分10
32秒前
善学以致用应助九鹤采纳,获得10
34秒前
鳗鱼不尤完成签到,获得积分10
36秒前
zh_li完成签到,获得积分10
46秒前
jinyue完成签到,获得积分10
46秒前
合适的梦菡完成签到,获得积分10
49秒前
50秒前
51秒前
小雪糕完成签到,获得积分10
51秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846100
求助须知:如何正确求助?哪些是违规求助? 3388485
关于积分的说明 10553181
捐赠科研通 3109045
什么是DOI,文献DOI怎么找? 1713300
邀请新用户注册赠送积分活动 824692
科研通“疑难数据库(出版商)”最低求助积分说明 774982