Multisize Patched Spatial-Temporal Transformer Network for Short- and Long-Term Crowd Flow Prediction

计算机科学 网格 变压器 人工智能 人群 数据挖掘 机器学习 实时计算 工程类 地理 计算机安全 大地测量学 电压 电气工程
作者
Yulai Xie,Jingjing Niu,Yang Zhang,Fang Ren
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (11): 21548-21568 被引量:5
标识
DOI:10.1109/tits.2022.3186707
摘要

The prediction of urban crowds is crucial not only to traffic management but also to studies on the city-level social phenomena, such as energy consumption, urban growth, city planning, and epidemic prevention. The challenges of accurately predicting crowd flow come from the non-linear spatial-temporal dependence of crowd flow data, periodic laws, such as daily and weekly periodicity, and external factors, such as weather and holidays. It is even more challenging for most existing short-term prediction models to make an accurate long-term prediction. In this paper, we propose a novel patched Transformer-based sequence-to-sequence model, called MultiSize Patched Spatial-Temporal Transformer Network (MSP-STTN), to incorporate rich and unified context modeling via a self-attention mechanism and global memory learning via a cross-attention mechanism for short- and long-term grid-based crowd flow prediction. In particular, a multisize patched spatial-temporal self-attention Transformer is designed to capture cross-space-time and cross-size contextual dependence of crowd data. The same structured cross-attention Transformer is developed to adaptively learn a global memory for long-term prediction in a responding-to-a-query style without error accumulation. In addition, a categorized space-time expectation is proposed as a unified regional encoding with temporal and external factors and is used as a base prediction for stable training. Furthermore, auxiliary tasks are introduced for promoting feature encoding and leveraging feature consistency to assist in the main prediction task. The experimental results reveal that MSP-STTN is competitive with the state of the art for one-step and multi-step short-term prediction within several hours and achieves practical long-term crowd flow prediction within one day on real-world grid-based crowd data sets TaxiBJ, BikeNYC, and CrowdDensityBJ. Our code and data are available at https://github.com/xieyulai/MSP-STTN .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
细心水绿完成签到,获得积分10
刚刚
慕青应助炙热访琴采纳,获得10
1秒前
Swan发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
漠之梦发布了新的文献求助10
3秒前
研友_nPKbNL完成签到,获得积分10
3秒前
小蘑菇应助循环采纳,获得10
5秒前
wfs完成签到,获得积分10
5秒前
wsws完成签到,获得积分10
5秒前
yin完成签到,获得积分10
5秒前
lishui发布了新的文献求助10
6秒前
7秒前
wsws发布了新的文献求助10
7秒前
寂寞的灵发布了新的文献求助10
7秒前
舒心友琴完成签到,获得积分10
8秒前
9秒前
10秒前
10秒前
共享精神应助称心如意采纳,获得10
10秒前
Wyl1222应助喝杯水再走采纳,获得50
11秒前
11秒前
Lucas应助wsws采纳,获得10
13秒前
炙热访琴发布了新的文献求助10
13秒前
鳗鱼如松完成签到,获得积分10
13秒前
14秒前
14秒前
16秒前
SHANEE发布了新的文献求助10
17秒前
星辰大海应助寂寞的灵采纳,获得10
17秒前
18秒前
916应助wardwood采纳,获得10
18秒前
18秒前
L912294993发布了新的文献求助10
18秒前
ling发布了新的文献求助10
19秒前
19秒前
不知名混子完成签到,获得积分10
20秒前
今后应助科研通管家采纳,获得10
20秒前
Awei应助科研通管家采纳,获得10
20秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3871099
求助须知:如何正确求助?哪些是违规求助? 3413235
关于积分的说明 10683580
捐赠科研通 3137659
什么是DOI,文献DOI怎么找? 1731135
邀请新用户注册赠送积分活动 834612
科研通“疑难数据库(出版商)”最低求助积分说明 781247