Does the Encapsulation Strategy of Pt Nanoparticles with Carbon Layers Really Ensure Both Highly Active and Durable Electrocatalysis in Fuel Cells?

电催化剂 质子交换膜燃料电池 纳米颗粒 催化作用 材料科学 纳米技术 铂金 溶解 化学工程 化学 电化学 电极 有机化学 工程类 物理化学
作者
Sang Gu Ji,Han Chang Kwon,Tae-Hoon Kim,Uk Sim,Chang Hyuck Choi
出处
期刊:ACS Catalysis 卷期号:12 (12): 7317-7325 被引量:19
标识
DOI:10.1021/acscatal.2c01618
摘要

Platinum is a key component of commercialized proton exchange membrane fuel cells (PEMFCs) to lower the energy cost of the sluggish oxygen reduction reaction (ORR) at the cathode. Beyond the significant advances in improving its initial activity, securing catalytic durability is the next challenge for the successful implementation of PEMFCs. Encapsulation of Pt nanoparticles (NPs) with thin carbon or silica layers has recently been highlighted as a promising strategy for alleviating Pt degradation. However, unexpectedly similar or occasionally even better catalytic activity on site-blocked Pt NPs has raised fundamental interest about the nature of their catalytic sites and the origin of the prolonged durability. Herein, to answer these questions, we investigate the ORR and methanol oxidation reaction activities of carbon-encapsulated Pt NP (C@Pt/C) catalysts. By controlling the robustness of the carbon shells synthetically and electrochemically, directly exposed Pt sites, at which facile transport of reactant/product molecules occurs via the loosely packed or highly defective carbon layers, are identified as the main catalytic sites. Interestingly, online differential electrochemical mass spectroscopy and inductively coupled plasma-mass spectrometry coupled to electrochemical flow cells verify a trade-off relationship between the activity and stability of the catalysts. In addition to their role as a physical barrier for prohibiting the dissolution and agglomeration of the Pt NPs, the carbon shell acts as a sacrificial agent, questioning the practical legitimacy of the strategy for achieving both high activity and durability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
建辰十五发布了新的文献求助10
2秒前
orixero应助正直的千柔采纳,获得10
6秒前
科研通AI2S应助激昂的亦竹采纳,获得10
8秒前
oysp完成签到,获得积分10
9秒前
iamnannan完成签到 ,获得积分10
12秒前
星辰大海应助美好的山槐采纳,获得10
14秒前
18秒前
19秒前
19秒前
轻松冰淇淋关注了科研通微信公众号
20秒前
20秒前
小蘑菇应助Rita采纳,获得10
21秒前
天天快乐应助十六采纳,获得10
22秒前
SciGPT应助chen采纳,获得10
23秒前
23秒前
23秒前
铭铭铭发布了新的文献求助100
24秒前
25秒前
27秒前
卷aaaa发布了新的文献求助10
28秒前
32秒前
蓝色的纪念完成签到,获得积分10
33秒前
36秒前
40秒前
starrism完成签到 ,获得积分10
42秒前
铭铭铭完成签到,获得积分10
43秒前
45秒前
47秒前
wangjingli666应助Victor采纳,获得10
48秒前
清秀迎松完成签到,获得积分10
48秒前
郭郭发布了新的文献求助10
50秒前
51秒前
dilli发布了新的文献求助10
54秒前
英姑应助须臾采纳,获得10
55秒前
55秒前
starrism关注了科研通微信公众号
56秒前
温暖的雨旋完成签到 ,获得积分10
57秒前
失眠夏之发布了新的文献求助10
58秒前
切尔顿发布了新的文献求助80
58秒前
高分求助中
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
Yuwu Song, Biographical Dictionary of the People's Republic of China 800
Multifunctional Agriculture, A New Paradigm for European Agriculture and Rural Development 600
The Illustrated History of Gymnastics 500
Division and square root. Digit-recurrence algorithms and implementations 500
Hemerologies of Assyrian and Babylonian Scholars 500
Bernd Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2493470
求助须知:如何正确求助?哪些是违规求助? 2151569
关于积分的说明 5496114
捐赠科研通 1872146
什么是DOI,文献DOI怎么找? 931075
版权声明 563464
科研通“疑难数据库(出版商)”最低求助积分说明 497826