姜黄素
角质层
体内
脂质体
月桂酸
化学
最大值
色谱法
阿奇霉素
Zeta电位
药代动力学
药理学
材料科学
抗生素
医学
生物化学
纳米技术
脂肪酸
纳米颗粒
生物
病理
生物技术
作者
Sumit Madan,Chetan Nehate,Tarani Kanta Barman,Anurag S. Rathore,Veena Koul
标识
DOI:10.1080/03639045.2018.1546310
摘要
The study highlights the significance of co-application of bioactive components into liposomal gel formulations and their comparison to azithromycin for treatment of Acne. A Design of Experiments (DoE) approach was utilized to obtain optimized liposomal formulation encapsulating curcumin, with size and zeta potential of ∼100 nm and ∼14 mV, respectively, characterized by DLS, HR-TEM, FESEM, and AFM. The curcumin liposomal dispersion depicted excellent stability over the period of 60 days, which was further converted in gel form using Carbopol. Pharmacokinetics of curcumin-loaded liposomal gel showed that Tmax for curcumin was achieved within 1 h of post application in both stratum corneum and skin, indicating quick penetration of nano-sized liposomes. Stratum corneum depicted Cmax of 688.3 ng/mL and AUC0-t of 5857.5 h × ng/mL, while the skin samples displayed Cmax of 203.3 ng/gm and AUC0-t of 2938.1 h × ng/gm. Lauric acid and azithromycin liposomal gel formulations were prepared as per the optimum parameters obtained by DoE. In antibacterial activity using agar diffusion assay, lauric acid gel formulation revealed ∼1.5 fold improved antibacterial effect than curcumin gel formulation. Interestingly, their co-application (1:1) exhibited significantly enhanced antibacterial effect against both macrolide-sensitive (1.81 versus 1.25 folds) and resistant strains of P. acnes (2.93 versus 1.22 folds) than their individual counterparts. The in vivo studies in rat ear model displayed a ∼2 fold reduction in comedones count and cytokines (TNF-α and IL-1β) on co-application with curcumin and lauric acid liposomal gel compared to placebo treated group.
科研通智能强力驱动
Strongly Powered by AbleSci AI