伤口愈合
材料科学
微粒
生物物理学
体外
利福霉素
碱性成纤维细胞生长因子
化学工程
控制释放
药物输送
生长因子
自愈水凝胶
复合数
纳米技术
生物医学工程
化学
生物化学
抗生素
高分子化学
复合材料
免疫学
生物
医学
受体
工程类
作者
Ming Shi,Hao Zhang,Ting Song,Xiaofang Liu,Yunfen Gao,Jianhua Zhou,Yan Li
标识
DOI:10.1021/acsami.9b04750
摘要
Hydrogel-based wound dressings provided a moist microenvironment and local release of bioactive molecules. Single drug loading along with fast release rates and usually in hydrogel sheets limited their performance. Hence, uniform alginate/CaCO3 composite microparticles (∼430 μm) with tunable compositions for sustainable release of drug and pH-sensitivity were successfully fabricated using microfluidic technology. Due to the presence of CaCO3 and the strong interactions with alginate molecules, lyophilized composite microparticles reverted to hydrogel state after rehydration. Regardless of microparticle states (hydrogel or lyophilized) and pH values (6.4 or 7.4), in vitro release rates of model drug were inversely related with CaCO3 concentrations and much lower than that for pure alginate microparticles. The release rate at pH 6.4 (simulating wound microenvironment) was always slower than that at pH 7.4 for the same type of microparticles. Rifamycin and basic fibroblast growth factor (bFGF) were independently encapsulated into AD-5-R and AD-40-F to achieve a fast release of rifamycin and a slower, more sustained release of bFGF, respectively; CD-F-R was a mixture of AD-5-R and AD-40-F at weight ratio 1/1. For AD-5-R and CD-F-R, inhibition zones of S. aureus were observed until day 5, showing a sustained antibacterial property. On the basis of in vitro wound healing model of NIH-3T3 cell micropattern on glass coverslips with a hole array, it was found that AD-40-F and CD-F-R significantly promoted cell proliferation and migration rates. In a full-thickness skin wound model of rats, CD-F-R microparticles significantly accelerated wound healing with higher granulation tissue thickness and better bioactivity to stimulate angiogenesis than the control group. Furthermore, CD-F-R microparticles demonstrated a good biocompatibility and biodegradability in vivo. Taken together, CD-F-R composite microparticles may ideally meet the requirements for different stages during wound healing and demonstrated a good potential to be used as dressing materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI