转化生长因子
化学
信号转导
癌症研究
细胞生物学
分子生物学
生物
生物化学
作者
Elham Abedini Bakhshmand,Bahram M. Soltani
标识
DOI:10.1515/hsz-2018-0264
摘要
Transforming growth factor-β (TGFβ) signaling acts as suppressor and inducer of tumor progression during the early and late stages of cancer, respectively. Some miRNAs have shown a regulatory effect on TGFβ signaling and here, we have used a combination of bioinformatics and experimental tools to show that hsa-miR-5590-3p is a regulator of multiple genes expression in the TGFβ signaling pathway. Consistent with the bioinformatics predictions, hsa-miR-5590-3p had a negative correlation of expression with TGFβ-R1, TGFβ-R2, SMAD3 and SMAD4 genes, detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Then, the dual luciferase assay supported the direct interaction between hsa-miR-5590-3p and TGFβ-R1, TGFβ-R2, SMAD3 and SMAD4-3'UTR sequences. Consistently, the TGFβ-R1 protein level was reduced following the overexpression of hsa-miR-5590-3p, detected by Western analysis. Also, hsa-miR-5590-3p overexpression brought about the downregulation of TGFβ-R1, TGFβ-R2, SMAD3 and SMAD4 expression in HCT-116 cells, detected by RT-qPCR, followed by cell cycle arrest in the sub-G1 phase, detected by flow cytometry. RT-qPCR results indicated that hsa-miR-5590-3p is significantly downregulated in breast tumor tissues (late stage) compared to their normal pairs. Altogether, data introduces hsa-miR-5590-3p as a negative regulator of the TGFβ/SMAD signaling pathway which acts through downregulation of TGFβ-R1, TGFβ-R2, SMAD3 and SMAD4 transcripts. Therefore, it can be tested as a therapy target in cancers in which the TGFβ/SMAD pathway is deregulated.
科研通智能强力驱动
Strongly Powered by AbleSci AI