数学
放松(心理学)
班级(哲学)
功能(生物学)
正多边形
指数函数
凸函数
指数衰减
期限(时间)
指数增长
数学分析
热方程
应用数学
纯数学
统计物理学
物理
量子力学
几何学
计算机科学
生物
社会心理学
人工智能
心理学
进化生物学
作者
Wenjun Liu,Zhijing Chen,Dongqin Chen
标识
DOI:10.1080/00036811.2019.1577390
摘要
In this paper, we consider the Moore–Gibson–Thompson equation with a memory term in the subcritical case, which arises in high-frequency ultrasound applications accounting for thermal flux and molecular relaxation times. For a class of relaxation functions satisfying g′(t)≤−ξ(t)H(g(t)) for H to be increasing and convex function near the origin and ξ(t) to be a nonincreasing function, we establish the optimal explicit and general energy decay result, from which we can recover the earlier exponential rate in the special case.
科研通智能强力驱动
Strongly Powered by AbleSci AI