电解质
碳酸丙烯酯
石墨
碳酸盐
材料科学
化学工程
碳酸乙烯酯
锂离子电池
锂(药物)
石墨烯
碳酸锂
电池(电)
离子
化学
阳极
阴极
无机化学
纳米技术
有机化学
复合材料
电极
物理化学
离子键合
功率(物理)
内分泌学
工程类
物理
医学
量子力学
作者
Jianzhong Yang,Qian Liu,Krzysztof Z. Pupek,Trevor L. Dzwiniel,Nancy L. Dietz Rago,Jiayu Cao,Naveen Dandu,Larry A. Curtiss,Kewei Liu,Chen Liao,Zhengcheng Zhang
出处
期刊:ACS energy letters
[American Chemical Society]
日期:2021-01-05
卷期号:6 (2): 371-378
被引量:47
标识
DOI:10.1021/acsenergylett.0c02400
摘要
Molecular engineering of electrolyte structures has led to the successful application of trifluoropropylene carbonate (TFPC), a fluorinated derivative of propylene carbonate (PC), in next-generation high-voltage high-energy lithium-ion cell. In contrast to a PC-based electrolyte which cointercalates in the form of Li+-solvated species into the graphene layer and exfoliates a graphite anode, a TFPC-based electrolyte is highly compatible with a graphite anode at low potential. Additionally, it shows exceptional oxidation stability on the charged cathode surface owing to the presence of the −CF3 group. An all-fluorinated electrolyte, that is, 1.0 M LiPF6 TFPC/2,2,2-trifluoroethyl carbonate (FEMC) (1/1 volume ratio) + FEC additive, was formulated and demonstrated excellent cycling stability in a high-voltage LiNi0.5Mn0.3Co0.2O2/graphite cell cycled between 3.0 and 4.6 V.
科研通智能强力驱动
Strongly Powered by AbleSci AI