PGA-Net: Pyramid Feature Fusion and Global Context Attention Network for Automated Surface Defect Detection

人工智能 棱锥(几何) 背景(考古学) 计算机科学 特征(语言学) 模式识别(心理学) 特征提取 像素 计算机视觉 融合 数学 古生物学 语言学 哲学 几何学 生物
作者
Hongwen Dong,Kechen Song,Yu He,Jing Xu,Yunhui Yan,Qinggang Meng
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:16 (12): 7448-7458 被引量:379
标识
DOI:10.1109/tii.2019.2958826
摘要

Surface defect detection is a critical task in industrial production process. Nowadays, there are lots of detection methods based on computer vision and have been successfully applied in industry, they also achieved good results. However, achieving full automation of surface defect detection remains a challenge, due to the complexity of surface defect, in intraclass. While the defects between interclass contain similar parts, there are large differences in appearance of the defects. To address these issues, this article proposes a pyramid feature fusion and global context attention network for pixel-wise detection of surface defect, called PGA-Net. In the framework, the multiscale features are extracted at first from backbone network. Then the pyramid feature fusion module is used to fuse these features into five resolutions through some efficient dense skip connections. Finally, the global context attention module is applied to the fusion feature maps of adjacent resolution, which allows effective information propagate from low-resolution fusion feature maps to high-resolution fusion ones. In addition, the boundary refinement block is added to the framework to refine the boundary of defect and improve the result of the prediction. The final prediction is the fusion of the five resolutions fusion feature maps. The results of evaluation on four real-world defect datasets demonstrate that the proposed method outperforms the state-of-the-art methods on mean intersection of union and mean pixel accuracy (NEU-Seg: 82.15%, DAGM 2007: 74.78%, MT_defect: 71.31%, Road_defect: 79.54%).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
赘婿应助淡然冬灵采纳,获得10
1秒前
风华正茂完成签到 ,获得积分10
3秒前
李健应助菜菜采纳,获得30
3秒前
4秒前
帅气老张发布了新的文献求助10
5秒前
6秒前
6秒前
高翠翠关注了科研通微信公众号
7秒前
至幸发布了新的文献求助10
7秒前
乐乐应助负责的方盒采纳,获得10
7秒前
xy完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助20
8秒前
8秒前
8秒前
田様应助kelvin采纳,获得10
9秒前
w1m关注了科研通微信公众号
10秒前
郭喆发布了新的文献求助10
10秒前
子璇发布了新的文献求助10
10秒前
科研通AI2S应助czz2007采纳,获得10
11秒前
刘瀚臻发布了新的文献求助10
12秒前
mmmmm完成签到,获得积分10
13秒前
正直静曼发布了新的文献求助10
14秒前
CodeCraft应助科研通管家采纳,获得10
14秒前
无极微光应助科研通管家采纳,获得20
14秒前
汉堡包应助科研通管家采纳,获得10
14秒前
田様应助科研通管家采纳,获得10
14秒前
CipherSage应助科研通管家采纳,获得10
14秒前
一天完成签到,获得积分10
14秒前
科研通AI6应助科研通管家采纳,获得30
14秒前
香蕉觅云应助科研通管家采纳,获得10
15秒前
赘婿应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
15秒前
搜集达人应助科研通管家采纳,获得20
15秒前
科目三应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
在水一方应助科研通管家采纳,获得10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5087017
求助须知:如何正确求助?哪些是违规求助? 4302540
关于积分的说明 13408011
捐赠科研通 4127749
什么是DOI,文献DOI怎么找? 2260458
邀请新用户注册赠送积分活动 1264739
关于科研通互助平台的介绍 1198892