GAN-Based Anomaly Detection and Localization of Multivariate Time Series Data for Power Plant

异常检测 计算机科学 模式识别(心理学) 人工智能 多元统计 时间序列 异常(物理) 深度学习 特征提取 主成分分析 人工神经网络 数据挖掘 信号(编程语言) 算法 离群值
作者
Yeji Choi,Hyunki Lim,Heeseung Choi,Ig-Jae Kim
出处
期刊:International Conference on Big Data and Smart Computing 卷期号:: 71-74 被引量:10
标识
DOI:10.1109/bigcomp48618.2020.00-97
摘要

Recently, as real-time sensor data collection increases in various fields such as power plants, smart factories, and health care systems, anomaly detection for multivariate time series data analysis becomes more important. However, extracting significant features from multivariate time series data is still challenging because it simultaneously takes into account the correlation between the pair of sensors and temporal information of each time series. Meanwhile, in the field of image based anomaly detection, Generative Adversarial Networks(GANs) is developed due to its ability to model the complex high-dimensional distribution of images. In this paper, we propose a novel GAN-based anomaly detection and localization framework along with a transformation method for time series imaging, called distance image. Our goal is to learn a mapping a series of distance image to the next distance image. The transforming multivariate time series into 2D image allows us to exploit encoder and decoder structure. Especially, the encoder with pointwise convolution in a series of images ensures to encode temporal information of each time series data as well the correlation between each variable. As a result, an anomaly can be detected and localized by conducting a residual image and an anomaly score function. We empirically demonstrate the effectiveness of our approach for anomaly detection tasks on a real-world power plant data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
羽翼深蓝完成签到,获得积分10
1秒前
科研通AI5应助小杜小杜采纳,获得20
2秒前
bc应助wil35采纳,获得20
3秒前
笨笨芯发布了新的文献求助10
3秒前
4秒前
木木完成签到 ,获得积分10
5秒前
5秒前
科研通AI2S应助苗条大叔采纳,获得10
5秒前
5秒前
深情安青应助夏明浩采纳,获得10
6秒前
大个应助笨笨芯采纳,获得10
8秒前
细心的乐枫完成签到,获得积分10
8秒前
俞璐完成签到,获得积分10
9秒前
天天快乐应助小吴采纳,获得10
10秒前
风信子发布了新的文献求助10
10秒前
爆米花应助lynn016采纳,获得10
11秒前
Taurusbyx发布了新的文献求助10
11秒前
果粒橙980完成签到,获得积分10
12秒前
12秒前
ding应助南宫秃采纳,获得10
12秒前
李家人给轻松曲奇的求助进行了留言
12秒前
111完成签到,获得积分20
14秒前
cadcae发布了新的文献求助30
15秒前
15秒前
凌小兔完成签到,获得积分10
15秒前
JiangHb完成签到,获得积分10
17秒前
飞快的雅青完成签到 ,获得积分10
17秒前
18秒前
111发布了新的文献求助10
18秒前
hangongyishan完成签到,获得积分10
19秒前
苗条大叔发布了新的文献求助10
19秒前
20秒前
20秒前
21秒前
小任同学要努力完成签到 ,获得积分10
21秒前
烟花应助惜曦采纳,获得10
21秒前
东都哈士奇完成签到,获得积分10
21秒前
Akim应助果粒橙980采纳,获得10
21秒前
5cdc完成签到,获得积分10
23秒前
zjy发布了新的文献求助10
23秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814820
求助须知:如何正确求助?哪些是违规求助? 3358947
关于积分的说明 10398754
捐赠科研通 3076401
什么是DOI,文献DOI怎么找? 1689803
邀请新用户注册赠送积分活动 813303
科研通“疑难数据库(出版商)”最低求助积分说明 767599