亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enabling Technologies for Personalized and Precision Medicine

精密医学 个性化医疗 临床试验 医疗保健 临床决策支持系统 计算机科学 软件部署 医学 生物标志物发现 人口 数据科学 风险分析(工程) 决策支持系统 生物 人工智能 生物信息学 生物化学 化学 环境卫生 病理 基因 经济 蛋白质组学 经济增长 操作系统
作者
Dean Ho,Stephen R. Quake,Edward R.B. McCabe,Wee Joo Chng,Edward Kai‐Hua Chow,Xianting Ding,Bruce D. Gelb,Geoffrey S. Ginsburg,Jason Hassenstab,Chih‐Ming Ho,William C. Mobley,Garry P. Nolan,Steven T. Rosen,Patrick Tan,Yun Yen,Ali Zarrinpar
出处
期刊:Trends in Biotechnology [Elsevier BV]
卷期号:38 (5): 497-518 被引量:322
标识
DOI:10.1016/j.tibtech.2019.12.021
摘要

Engineering approaches to precision medicine will harness population-wide data to identify individualized treatment strategies. Personalized medicine harnesses a subject’s own data to individualize their own care, from diagnosis through treatment selection and monitoring. Novel clinical trial designs will play a vital role in assessing the efficacy and safety of emerging therapies and diagnostics. Artificial intelligent platforms will globally optimize combination therapy from the preclinical through clinical stages of validation. The widespread deployment of precision and personalized medicine technologies will involve the convergence of several factors ranging from evolving education at the interface of engineering and medicine and policies that support new clinical trial designs, to scaling the use of electronic medical records (EMR) to drive clinical decision support. Individualizing patient treatment is a core objective of the medical field. Reaching this objective has been elusive owing to the complex set of factors contributing to both disease and health; many factors, from genes to proteins, remain unknown in their role in human physiology. Accurately diagnosing, monitoring, and treating disorders requires advances in biomarker discovery, the subsequent development of accurate signatures that correspond with dynamic disease states, as well as therapeutic interventions that can be continuously optimized and modulated for dose and drug selection. This work highlights key breakthroughs in the development of enabling technologies that further the goal of personalized and precision medicine, and remaining challenges that, when addressed, may forge unprecedented capabilities in realizing truly individualized patient care. Individualizing patient treatment is a core objective of the medical field. Reaching this objective has been elusive owing to the complex set of factors contributing to both disease and health; many factors, from genes to proteins, remain unknown in their role in human physiology. Accurately diagnosing, monitoring, and treating disorders requires advances in biomarker discovery, the subsequent development of accurate signatures that correspond with dynamic disease states, as well as therapeutic interventions that can be continuously optimized and modulated for dose and drug selection. This work highlights key breakthroughs in the development of enabling technologies that further the goal of personalized and precision medicine, and remaining challenges that, when addressed, may forge unprecedented capabilities in realizing truly individualized patient care. in the context of healthcare, AI uses algorithms to reconcile complex data in an effort to identify actionable strategies for many applications. These range from improving treatment outcomes to accelerating drug discovery, among others. with regards to healthcare, BDA is used to correlate tradeoffs and decision-making processes. For example, using BDA towards novel clinical trial designs may involve the correlation of outcome objectives for a patient with the benefits and risks undergoing treatment. this form of immunotherapy modifies a patient's own T cells, which are derived from their immune system, with chimeric antigen receptors (CAR) on their surfaces. These modified T cells can then selectively target surface markers on the cancer cells using these receptors during treatment. this cell is released by a primary tumor into the circulatory system and may serve as a foundation for metastasis. using a broad spectrum of applicable data, CDS platforms provide actionable guidance to clinicians in areas such as drug selection, dosage modifications, and other courses of treatment. the CRISPR and CRISPR-associated protein 9 (CRISPR-Cas9) platform is used for genome editing, where genetic material can be added, removed, or modified. This approach can potentially be used to address a multitude of diseases by altering the genetic information that drives the onset of these disorders. this mechanism-independent artificial intelligence platform is used to dynamically optimize clinical combination therapy dosing during the course of treatment. By using only a patient’s own data to manage their own combination therapy regimen, CURATE.AI can maximize treatment efficacy and safety for a sustained duration on an individualized basis. It is broadly applicable towards oncology, infectious disease, and many other disease indications. this is a mass spectrometry methodology that uses heavy metal antibody tags for cell surface and intracellular markers. CyTOF analysis enables multiplexed profiling of single-cell responses for applications in drug development and fundamental studies into cellular mechanisms. electronic medical records can contain a broad spectrum of information pertaining to a patient’s health history. They can serve as vital platforms for the implementation of treatment and diagnostic paradigms that may integrate emerging technologies such as artificial intelligence, wearables, and other modalities. ML platforms use algorithms that are trained with a set of data to subsequently make inferences and identify a course of action without requiring a directed set of instructions. Implementation of ML typically requires minimal human interaction. In the context of healthcare, it can be used for many applications, including the design of drug combinations and the development of biomaterials, among others. the highest dose of a drug that can be administered to a subject while simultaneously avoiding an unacceptable level of toxicity. With regards to precision and personalized medicine, emerging studies have shown promise in identifying lower drug doses that result in improved efficacy and safety, potentially avoiding the need to reach the MTD during therapy. this approach is used to address mitochondrial diseases by replacing mitochondria that contain DNA mutations with healthy mitochondria. In the context of reproductive medicine, a mother with mitochondrial disease can have her eggs transferred to a donor egg with healthy mitochondria. nanodiamonds are carbon-based nanoparticles that can be used to carry multiple classes of therapeutic and imaging compounds. Their unique surface electrostatic properties have been used to markedly improve magnetic resonance imaging contrast efficiency as well as drug delivery efficacy. this artificial intelligence-based approach uses quantifiable measures of clinical efficacy and safety, such as tumor burden through imaging or circulating biomarker analysis, as well as toxicity panels to guide drug dosing. This approach can be implemented in a mechanism-independent manner. this AI-based approach simultaneously identifies the right drugs and corresponding doses from large pools of candidate therapies for novel drug combination development. It can be implemented without disease target/mechanism information and does not rely on drug synergy predictions to optimize treatment outcomes. these nanostructures consist of precisely positioned and high-density configurations of nucleic acids that have been explored for gene regulation with broad applications across different disease indications. They are currently being evaluated at the clinical level. this approach uses 3D printed microwells that contain multiple drugs and can be used for the timed release of multiple therapies in a sustained fashion. this enzyme is comprised of DNA-binding and cleavage domains and is used as a genome editing platform. ZFN-based genome editing therapies are currently being evaluated at the clinical level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苹果乐松完成签到,获得积分10
12秒前
25秒前
小彭发布了新的文献求助10
28秒前
小彭完成签到,获得积分10
37秒前
科研通AI5应助qingzx采纳,获得10
46秒前
yb完成签到,获得积分10
1分钟前
葛力完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
weibo完成签到,获得积分10
1分钟前
德烁发布了新的文献求助10
1分钟前
1分钟前
qingzx发布了新的文献求助10
1分钟前
善学以致用应助Uluru采纳,获得10
2分钟前
qingzx完成签到 ,获得积分20
2分钟前
领导范儿应助qingzx采纳,获得30
2分钟前
2分钟前
lalala完成签到,获得积分10
3分钟前
汤圆儿发布了新的文献求助10
3分钟前
xiewuhua完成签到,获得积分10
3分钟前
poki完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
WZQ发布了新的文献求助10
4分钟前
科研通AI5应助烂漫春天采纳,获得10
4分钟前
4分钟前
打打应助科研通管家采纳,获得30
4分钟前
4分钟前
WZQ完成签到,获得积分10
4分钟前
qingshu发布了新的文献求助10
4分钟前
qingshu完成签到,获得积分20
4分钟前
moos完成签到 ,获得积分10
5分钟前
5分钟前
dcm发布了新的文献求助10
5分钟前
WerWu完成签到,获得积分10
5分钟前
003完成签到,获得积分10
6分钟前
上官若男应助科研通管家采纳,获得10
6分钟前
深深完成签到,获得积分10
6分钟前
7分钟前
失眠的桐完成签到 ,获得积分10
7分钟前
001完成签到,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Reflections of female probation practitioners: navigating the challenges of working with male offenders 500
Probation staff reflective practice: can it impact on outcomes for clients with personality difficulties? 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5031542
求助须知:如何正确求助?哪些是违规求助? 4266139
关于积分的说明 13298582
捐赠科研通 4075428
什么是DOI,文献DOI怎么找? 2229053
邀请新用户注册赠送积分活动 1237607
关于科研通互助平台的介绍 1162493