A Raman Lidar Tropospheric Water Vapour Climatology and Height-Resolved Trend Analysis over Payerne Switzerland

大气科学 激光雷达 去极化率 气溶胶 混合比 卷云
作者
Shannon Hicks-Jalali,Robert J. Sica,Giovanni Martucci,Eliane Maillard Barras,Jordan Voirin,Alexander Haefele
出处
期刊:Atmospheric Chemistry and Physics [Copernicus Publications]
卷期号:20 (16): 9619-9640 被引量:6
标识
DOI:10.5194/acp-20-9619-2020
摘要

Abstract. Water vapour is the strongest greenhouse gas in our atmosphere, and its strength and its dependence on temperature lead to a strong feedback mechanism in both the troposphere and the stratosphere. Raman water vapour lidars can be used to make high-vertical-resolution measurements on the order of tens of metres, making height-resolved trend analyses possible. Raman water vapour lidars have not typically been used for trend analyses, primarily due to the lack of long-enough time series. However, the Raman Lidar for Meteorological Observations (RALMO), located in Payerne, Switzerland, is capable of making operational water vapour measurements and has one of the longest ground-based and well-characterized data sets available. We have calculated an 11.5-year water vapour climatology using RALMO measurements in the troposphere. Our study uses nighttime measurements during mostly clear conditions, which creates a natural selection bias. The climatology shows that the highest water vapour specific-humidity concentrations are in the summer months and the lowest in the winter months. We have also calculated the geophysical variability of water vapour. The percentage of variability of water vapour in the free troposphere is larger than in the boundary layer. We have also determined water vapour trends from 2009 to 2019. We first calculate precipitable water vapour (PWV) trends for comparison with the majority of water vapour trend studies. We detect a nighttime precipitable water vapour trend of 1.3 mm per decade using RALMO measurements, which is significant at the 90 % level. The trend is consistent with a 1.38  ∘ C per decade surface temperature trend detected by coincident radiosonde measurements under the assumption that relative humidity remains constant; however, it is larger than previous water vapour trend values. We compare the nighttime RALMO PWV trend to daytime and nighttime PWV trends using operational radiosonde measurements and find them to agree with each other. We cannot detect a bias between the daytime and nighttime trends due to the large uncertainties in the trends. For the first time, we show height-resolved increases in water vapour through the troposphere. We detect positive tropospheric water vapour trends ranging from a 5 % change in specific humidity per decade to 15 % specific humidity per decade depending on the altitude. The water vapour trends at five layers are statistically significant at or above the 90 % level.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
syy080837发布了新的文献求助30
刚刚
铛铛铛发布了新的文献求助10
1秒前
Orange应助韩梅采纳,获得10
1秒前
You发布了新的文献求助10
1秒前
Jun发布了新的文献求助10
1秒前
kone发布了新的文献求助10
3秒前
3秒前
坚强不言发布了新的文献求助20
3秒前
完美世界应助哈哈哈采纳,获得10
3秒前
4秒前
自信凡波完成签到,获得积分20
4秒前
smottom应助优秀的行云采纳,获得10
4秒前
简单河马完成签到,获得积分10
4秒前
若宫伊芙发布了新的文献求助30
4秒前
dichloro发布了新的文献求助10
4秒前
法码完成签到,获得积分10
5秒前
5秒前
Ge完成签到,获得积分10
5秒前
乐乐应助wwww采纳,获得10
6秒前
Cyrus2022发布了新的文献求助30
6秒前
今后应助gdh采纳,获得10
6秒前
yeurekar完成签到,获得积分10
7秒前
直率翠绿完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
aerosol完成签到,获得积分10
8秒前
彭于晏应助大胆的岂愈采纳,获得10
8秒前
香蕉觅云应助May采纳,获得10
8秒前
9秒前
万能图书馆应助ooooodai采纳,获得10
9秒前
10秒前
开心酬海发布了新的文献求助10
10秒前
cxh完成签到,获得积分20
11秒前
游一完成签到,获得积分10
12秒前
12秒前
哈哈哈发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667738
求助须知:如何正确求助?哪些是违规求助? 4887401
关于积分的说明 15121482
捐赠科研通 4826512
什么是DOI,文献DOI怎么找? 2584135
邀请新用户注册赠送积分活动 1538152
关于科研通互助平台的介绍 1496238