Probabilistic Undirected Graph Based Denoising Method for Dynamic Vision Sensor

计算机科学 概率逻辑 降噪 图形 噪音(视频) 算法 人工智能 模式识别(心理学) 理论计算机科学 图像(数学)
作者
Jinjian Wu,Chuanwei Ma,Leida Li,Weisheng Dong,Guangming Shi
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:23: 1148-1159 被引量:41
标识
DOI:10.1109/tmm.2020.2993957
摘要

Dynamic Vision Sensor (DVS) is a new type of neuromorphic event-based sensor, which has an innate advantage in capturing fast-moving objects. Due to the interference of DVS hardware itself and many external factors, noise is unavoidable in the output of DVS. Different from frame/image with structural data, the output of DVS is in the form of address-event representation (AER), which means that the traditional denoising methods cannot be used for the output (i.e., event stream) of the DVS. In this paper, we propose a novel event stream denoising method based on probabilistic undirected graph model (PUGM). The motion of objects always shows a certain regularity/trajectory in space and time, which reflects the spatio-temporal correlation between effective events in the stream. Meanwhile, the event stream of DVS is composed by the effective events and random noise. Thus, a probabilistic undirected graph model is constructed to describe such priori knowledge (i.e., spatio-temporal correlation). The undirected graph model is factorized into the product of the cliques energy function, and the energy function is defined to obtain the complete expression of the joint probability distribution. Better denoising effect means a higher probability (lower energy), which means the denoising problem can be transfered into energy optimization problem. Thus, the iterated conditional modes (ICM) algorithm is used to optimize the model to remove the noise. Experimental results on denoising show that the proposed algorithm can effectively remove noise events. Moreover, with the preprocessing of the proposed algorithm, the recognition accuracy on AER data can be remarkably promoted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wr完成签到 ,获得积分10
1秒前
整点薯条发布了新的文献求助10
3秒前
风趣的碧琴完成签到 ,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
qing完成签到 ,获得积分10
8秒前
CipherSage应助整点薯条采纳,获得10
8秒前
drughunter009完成签到,获得积分10
9秒前
zx发布了新的文献求助30
11秒前
Sicecream完成签到,获得积分10
11秒前
生动的半山完成签到,获得积分10
12秒前
梵高晚风完成签到,获得积分10
12秒前
翰飞寰宇完成签到,获得积分10
13秒前
夜城如梦醉完成签到,获得积分10
20秒前
风中钥匙完成签到,获得积分10
20秒前
安AN完成签到,获得积分10
20秒前
zh123完成签到,获得积分10
21秒前
21秒前
陈JY完成签到 ,获得积分10
25秒前
Nora完成签到 ,获得积分10
25秒前
哭泣鼠标完成签到 ,获得积分10
26秒前
小蘑菇应助luoyutian采纳,获得10
29秒前
摸鱼王完成签到,获得积分10
30秒前
wangzhenghua完成签到 ,获得积分10
30秒前
努力努力再努力完成签到,获得积分10
31秒前
顾矜应助土豪的如萱采纳,获得10
31秒前
yuko完成签到 ,获得积分10
32秒前
32秒前
32秒前
hyxxx完成签到,获得积分10
33秒前
zhsy完成签到,获得积分10
33秒前
35秒前
量子星尘发布了新的文献求助10
35秒前
35秒前
36秒前
li完成签到,获得积分10
36秒前
luoyutian完成签到,获得积分10
37秒前
铁头霸霸完成签到 ,获得积分10
40秒前
十七完成签到,获得积分10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Symbiosis: A Very Short Introduction 1500
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
Letters from Rewi Alley to Ida Pruitt, 1954-1964, vol. 1 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4967954
求助须知:如何正确求助?哪些是违规求助? 4225501
关于积分的说明 13159490
捐赠科研通 4012345
什么是DOI,文献DOI怎么找? 2195526
邀请新用户注册赠送积分活动 1208922
关于科研通互助平台的介绍 1122944