Photovoltaic panel cooling by atmospheric water sorption–evaporation cycle

光伏系统 环境科学 光伏 光电-热混合太阳能集热器 材料科学 气象学 太阳能 环境工程 工程类 电气工程 物理
作者
Renyuan Li,Yusuf Shi,Mengchun Wu,Seung‐Hyun Hong,Peng Wang
出处
期刊:Nature sustainability [Springer Nature]
卷期号:3 (8): 636-643 被引量:301
标识
DOI:10.1038/s41893-020-0535-4
摘要

More than 600 GW of photovoltaic panels are currently installed worldwide, with the predicted total capacity increasing very rapidly every year. One essential issue in photovoltaic conversion is the massive heat generation of photovoltaic panels under sunlight, which represents 75–96% of the total absorbed solar energy and thus greatly increases the temperature and decreases the energy efficiency and lifetime of photovoltaic panels. In this report we demonstrate a new and versatile photovoltaic panel cooling strategy that employs a sorption-based atmospheric water harvester as an effective cooling component. The atmospheric water harvester photovoltaic cooling system provides an average cooling power of 295 W m–2 and lowers the temperature of a photovoltaic panel by at least 10 °C under 1.0 kW m–2 solar irradiation in laboratory conditions. It delivered a 13–19% increase in electricity generation in a commercial photovoltaic panel in outdoor field tests conducted in the winter and summer in Saudi Arabia. The atmospheric water harvester based photovoltaic panel cooling strategy has little geographical constraint in terms of its application and has the potential to improve the electricity production of existing and future photovoltaic plants, which can be directly translated into less CO2 emission or less land occupation by photovoltaic panels. As solar power is taking centre stage in the global fight against climate change, atmospheric water harvester based cooling represents an important step toward sustainability. Photovoltaic panel conversion generates heat that reduces the energy efficiency and lifetime of the panel. A photovoltaic panel cooling strategy by a sorption-based atmospheric water harvester is shown to improve the productivity of electricity generation with important sustainability advantages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷酷草莓发布了新的文献求助10
1秒前
2秒前
典雅的纸飞机完成签到 ,获得积分10
2秒前
wml应助方翼采纳,获得10
2秒前
3秒前
3秒前
WQQ完成签到,获得积分10
4秒前
LHN发布了新的文献求助10
4秒前
奋斗向南完成签到,获得积分10
6秒前
大分割完成签到,获得积分10
7秒前
Lucas应助Joshua采纳,获得10
8秒前
8秒前
听风者完成签到,获得积分10
8秒前
丘比特应助王松桐采纳,获得10
8秒前
所所应助lxm采纳,获得10
9秒前
wangndk完成签到,获得积分10
9秒前
哈哈哈发布了新的文献求助10
9秒前
嘿嘿完成签到 ,获得积分20
10秒前
王红鑫完成签到,获得积分10
10秒前
Banana完成签到,获得积分10
10秒前
朵乐doll发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
HXY完成签到 ,获得积分10
11秒前
11秒前
酷波er应助苍蓝所栖采纳,获得10
12秒前
kk发布了新的文献求助10
12秒前
Hello应助白鑫宇采纳,获得10
14秒前
14秒前
隐形曼青应助Sean采纳,获得10
14秒前
星空点点完成签到 ,获得积分10
14秒前
samtol完成签到,获得积分10
14秒前
善良的冰颜完成签到 ,获得积分10
15秒前
雨滴音乐发布了新的文献求助10
16秒前
17秒前
小壳儿完成签到 ,获得积分10
17秒前
123654完成签到 ,获得积分10
18秒前
18秒前
19秒前
T拐拐发布了新的文献求助10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5484143
求助须知:如何正确求助?哪些是违规求助? 4584418
关于积分的说明 14397830
捐赠科研通 4514421
什么是DOI,文献DOI怎么找? 2473992
邀请新用户注册赠送积分活动 1459944
关于科研通互助平台的介绍 1433349