Photovoltaic panel cooling by atmospheric water sorption–evaporation cycle

光伏系统 环境科学 光伏 光电-热混合太阳能集热器 材料科学 气象学 太阳能 环境工程 工程类 电气工程 物理
作者
Renyuan Li,Yusuf Shi,Mengchun Wu,Seung‐Hyun Hong,Peng Wang
出处
期刊:Nature sustainability [Springer Nature]
卷期号:3 (8): 636-643 被引量:301
标识
DOI:10.1038/s41893-020-0535-4
摘要

More than 600 GW of photovoltaic panels are currently installed worldwide, with the predicted total capacity increasing very rapidly every year. One essential issue in photovoltaic conversion is the massive heat generation of photovoltaic panels under sunlight, which represents 75–96% of the total absorbed solar energy and thus greatly increases the temperature and decreases the energy efficiency and lifetime of photovoltaic panels. In this report we demonstrate a new and versatile photovoltaic panel cooling strategy that employs a sorption-based atmospheric water harvester as an effective cooling component. The atmospheric water harvester photovoltaic cooling system provides an average cooling power of 295 W m–2 and lowers the temperature of a photovoltaic panel by at least 10 °C under 1.0 kW m–2 solar irradiation in laboratory conditions. It delivered a 13–19% increase in electricity generation in a commercial photovoltaic panel in outdoor field tests conducted in the winter and summer in Saudi Arabia. The atmospheric water harvester based photovoltaic panel cooling strategy has little geographical constraint in terms of its application and has the potential to improve the electricity production of existing and future photovoltaic plants, which can be directly translated into less CO2 emission or less land occupation by photovoltaic panels. As solar power is taking centre stage in the global fight against climate change, atmospheric water harvester based cooling represents an important step toward sustainability. Photovoltaic panel conversion generates heat that reduces the energy efficiency and lifetime of the panel. A photovoltaic panel cooling strategy by a sorption-based atmospheric water harvester is shown to improve the productivity of electricity generation with important sustainability advantages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
威武的阑香完成签到,获得积分10
刚刚
共享精神应助雨天采纳,获得10
1秒前
1秒前
2秒前
AK发布了新的文献求助10
2秒前
2秒前
终梦应助林白采纳,获得60
2秒前
2秒前
冷傲迎梦完成签到,获得积分10
3秒前
Akim应助科研狗采纳,获得10
3秒前
4秒前
感叹号完成签到,获得积分10
5秒前
刘书鹏完成签到,获得积分10
5秒前
lww关注了科研通微信公众号
5秒前
小李发布了新的文献求助10
5秒前
12345656656发布了新的文献求助10
5秒前
6秒前
冷傲迎梦发布了新的文献求助10
7秒前
orixero应助科研通管家采纳,获得10
7秒前
迷你的葵阴完成签到,获得积分20
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
打打应助科研通管家采纳,获得10
7秒前
且慢应助科研通管家采纳,获得20
7秒前
彩色的听兰完成签到 ,获得积分10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
汉堡肉应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
情怀应助科研通管家采纳,获得10
7秒前
7秒前
wanci应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
8秒前
晞晞完成签到,获得积分20
8秒前
Vincey完成签到,获得积分10
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5481783
求助须知:如何正确求助?哪些是违规求助? 4582732
关于积分的说明 14386753
捐赠科研通 4511532
什么是DOI,文献DOI怎么找? 2472396
邀请新用户注册赠送积分活动 1458660
关于科研通互助平台的介绍 1432181